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Foreword

Warfare is as old as recorded human history. War has been especially prevalent in the last 500
years with the increasing conflict between large nation states. A great amount of analysis and
thought has been given to the "Art of War". Nine principles of War have been defined: Objective,
Offensive, Mass, Economy of Force, Maneuver, Unity of Command, Security, Surprise, and
Simplicity. Despite these accepted principles, the science of war has remained elusive. Since
World War II, investigators have searched for a theory on the physics of war--"De Physica Belli".
Efforts have been more successful with the prominent rise of Operations Research as an analysis
tool to assist combat operations. Dr. Bruce W. Fowler uses these modern analytical tools to seek the
answer to the following question in this report--"Is there any scientific basis to describe the physics
of war?" This report provides the answer to this question. His approach to a physics of war is the
application of Lanchestrian attrition mechanics which first appeared in theory in the early 1900's.

Dr. Fowler introduces Lanchester's work and then examines whether Lanchester really was the
"father of attrition theory" and the resulting force ratios and attrition coefficients. Lanchester
initially claimed that mirriproved tactics, training, doctrine, and morale were not amenable to
mathematical analysis. Once the reader generally understands Lanchester's Differential Equations
and their solutions, Dr. Fowler proceeds to introduce variations on a theme by carrying Attrition
Theory forward until the late 1980s. Some of the topics covered are: stochastic versus deterministic
representations; homogeneous versus non-homogeneous forces; dependencies of attrition and
attrition rates on time and range, not just on force strength; aggregation and disaggregation;
Quantified Judgment Models; Bonder-Farrell Attrition Theory and Ancker-Gafarian Attrition

Theory.

iii




"De Physica Belli" is intended to be a general reference and introduction to attrition theory ‘
suitable for the combat soldier, the student-soldier, or the military analyst. The manuscript succeeds
in that respect and provides a good overall summary of the state-of-practice in attrition theory
through 1990. However, given the great advances in modeling, simulation and computational power
since 1990, it would not be surprising to see future updates to this work. The mathematical tools of
complexity theory, fractal dimensions, fuzzy logic, information theory and the power of scientific
visualization of data in interactive computer simulations may offer new and exciting insights into
the physics of war. These new developments will most certainly provide opportunities to conduct

experiments in the science of warfare that go beyond the limitations inherent in the analysis of

historical data.
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PREFACE

This is a book about war.

It is the result of several years interest in the modeling and simulation of
warfare. It neither praises nor decries war: war is a social activity of mankind and as
such can be avoided or denied no more than any other interaction of man with others
of his kind. Clausewitz tells us that war is an extension of policy by other means,
while Mao tells us that power grows from the end of a gun. Clearly then, war is social
and at best is governed by such social rules as the participants are willing and able to

apply.

Why should a physicist write a book about war? The answer has two parts. A
physicist, more than most of humanity, looks at the world around him and continually
asks "Why?" He applies logic, patience, stubborn determination, and mathematics to
the question. :

That "Why?" question brought me to the subject of war, and continues to lead
me through investigations and studies of it. It also led to writing this book so that
others could ask that question with greater efficiency by using what little stubborn-
ness | have been able to apply.

Man has apparently practiced war as long as he has existed. The tool making
tradition/development of man is clear. While the application of early chipped rock tools
such as choppers and hand axes to warfare can be questioned, the question arises not
from the likelihood of their application, but to the nature of warfare in that social
environment. Warfare today is viewed as being national in scope (even civil war) and
reflecting some cultural conflict (which itself raises the question of how warfare can
exist without the benefit of agriculture.) In neolithic times, nations as such did not
exist, but familial and tribal level social groups most likely did, and conflict between
such groups probably had all of the cultural aspects of war as we think of it. The
earliest evidence of warfare as conflict between two (or more) collected forces is
found in Neolithic cave paintings'. Most Historians neglect warfare prior to the
Macedonian Juggernaut of Philip and Alexander, although we now have evidence that
the social development of war, its institutions and mechanism is fundamentally older.?
This is partly due to the lack of recorded history and partly because Macedonia (under
Philip) was the first western nation. However, as Jones® notes, the primary reason
was the emergence, with the Macedonian nation, of the Macedonian army as the first
balanced, combined arms army.

The Romans made no strong distinction between technical knowledge and its
military applications. Neither, apparently, do the Russians, America's overt rival (until
recently?) for dominance of Civilization. In America, we practice an oscillating love-
hate relationship with things military. For several years now, this country has practiced
an academic apathy for matters of warfare. To this end, there are almost no avenues
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Preface

for disseminating information on warfare research.

This book is not primarily just for the soldier. By that | do not mean that the
soldier should not read it, but | recognize that the profession of soldier is not given to
mathematics and analysis. It is however, much given to the rigorous study of
stubbornness and patience, to the art of concerted action and deliberate inaction. To
the average soldier, a book of analysis would be a punishment no matter how
couched. To the occasional soldier with a bent for mathematics and analysis, it would
be of insightful use. If | have done my task well, it may even be of abiding and
delightful value.

In this book, we limit ourselves (primarily) to some of the aspects of formal war.
Formal war is a term that distinguishes warfare characterized by the use on both sides
of trained troops under discipline with a rigorous chain of command and a set of
formalized goals. Informal warfare such as riots, civic disturbances, terrorism,
inquisition, and other spontaneously constituted conflict are thus excluded. (The
special case of guerilla conflict is somewhat of a grey area and we shall treat some
of the combat aspects of such conflict.) The scope of this book is limited to treating
some of the aspects of formal war.

Of particular concern will be the tactical level of formal warfare (or just warfare,
as shall hereafter be used synonymously.) The strategic or (recently rediscovered in
this country) operational levels of warfare will be devoted little attention. This
limitation is dictated not solely by desire but by the fact that the tactical level of
warfare is most strongly associated with attrition and attrition is the part of warfare
that has been examined most deeply. -

It must be noted that the practice of war is an art. However, art has its
technical aspects. Just as painting is an art form, it too has its technical aspects - the
optical and material technology associated with perspective, color, the functioning of
the human eye, the production of paint and canvas. Similarly, the art of war has
technical components that support its execution. This book deals with some of those
technical components.

This does not mean that this book is intended to have an audience of soldiers.
As the execution and appreciation of painting cannot be totally technical, the
execution and appreciation of warfare cannot be totally technical as well. But in both
instances, there are technical factors and contributions to both the execution and
appreciation of painting and warfare. The painter cannot successfully practice his art
without knowledge and use of the technical aspects of his tools and methods. Neither
can the manufacturer of art supplies be ignorant of the technical aspects of painting
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Preface

and satisfy the needs of the painter to practice his art. In a like manner, the soldier
cannot practice his art without some technical knowledge. Nor can the supporter of
the soldier, the technologist or analyst of war, satisfy the needs of the soldier without
knowledge of the technical aspects of war. This book, then, is of interest to both the
soldier and the technologist of war.

Most books about warfare are historic in nature, ranging from memoirs such as
Xenophon's The Persian Expedition*, Gaius Julius Caesar's The Conquest of Gaul®, and
Donn Albert Starry's Armored Combat in Vietnam®, through tactical and strategic
treatises such as Frederick the Great's On the Art of War’, Jomini's The Art of War®,
and von Clausewitz's Vom Kreig (On War)®. (The latter category seldom seen on
bookstore shelves.) Some historical analysis of warfare has found its way into print,
ranging from Dehlbriick's History of the Art of War' to Trevor Dupuy's Numbers,
Predictions and War''. The modeling of warfare has its origins in the analysis of
history. This is amply evidenced in Lanchester's Aircraft in Warfare: The Dawn of the
Fourth Age'?, Osipov’'s articles'®, and Fiske's The Navy as a Fighting Machine'*.
(Discussed briefly in Chapter Il.) Books on the technical aspects of the modeling of
warfare are rare, the exceptions being Dupuy's book and Taylor's Force-on-Force
Attrition Modelling'®, the former describing an empirical approach from historical data
which sadly, despite its.aesthetic form, lacks any theoretical foundation which admits
the introduction of technological advances (which as Ferrill notes increasingly
dominates the nature of warfare,) and the latter giving no attention to historical
insights and scant attention to the underlying mechanics of attrition processes.

What this book is, is a combination of historical (both in the classic sense and
in the sense of the discipline) and technical (mostly the latter) analyses of warfare
models. The approach is somewhat mathematical. A knowledge of the integral
calculus and elementary probability theory is assumed; that level of sophistication
seems to be the minimum requisite to consider the subject in depth, and is probably
enough to dissuade the average professional soldier from reading further. That is not
altogether a misplaced view; as | have said, the practice of war is an art form and this
book is not primarily concerned with the art form. However, to borrow a model from
my own profession, a physicist will gather knowledge (and tools) from a mathematics
book without having the depth of understanding of the proofs of the theorems that is
required of the mathematician. Rather, the physicist largely accepts the proofs’ validity
at face value and uses them as tools in the practice of his profession. So too may the
soldier make use of the material in this book, using the results of the derivations and
analyses as tools. Fundamentally, however, this book is concerned with the analysis
of warfare, and as such, is of interest to the more analytically inclined of the
community. This book will not likely ever be mentioned in the same breath or be of
comparable value to the soldier as Vom Kreig; it may be of some use to the technical
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community that supports the soldier in the pursuit of his art form by providing him
with the materiel and doctrinal tools of his trade.

Of necessity, much of this book is concerned with the attrition process of
warfare. This is partly due to our fascination with that aspect of war, and partly due
to the preponderance of the literature on that aspect. Presumably, attrition is more
amenable to analysis than other aspects of war!

While this book does not portray itself to be an historical work, some data on
historical warfare is included to address salient points in the mathematical theory and
provide insight in the analyses. Of necessity, those data are limited; warfare is not,
and never will be, a strictly scientific subject. We cannot conduct scientific
experiments on warfare. The control problems aside, moral and economic factors
preclude such experiments. As a result, considerable uncertainty must and does exist
in the historical data. Of necessity then, the data must be culled. (I am not an
historian, and detractors may claim that | have been overselective in my choices or
have been deficient in the exhaustiveness of my scholarship. | cannot defend myself
on the historical selections except to state that | have attempted to be honest in my
selections.) In many cases, the culling of historical data is dictated by the requisites
of the mathematics - a minimum of numeric data is necessary and only battles for
which that minimum can be found can be subjected to analyses of the types presented
here. Much of this data, as | have stated, is uncertain; in particular, meaningful data
on the actual duration of the vast majority of battles is wanting, or at best, suspect.
Even force strengths are uncertain, with contradictory reports often being the norm.

Within these limitations, this book presents few conclusions. Rather, it attempts
to lend insight into the dynamics of warfare. The reader should remember that this is
an immature discipline. It has few laws and is predictive in only the most cursory
sense. (We do not mean here the Laws of War; they are the laws of the art of war,
not laws in a technical sense.) Still, the discipline offers considerable promise in terms
of developing into something which will be a contributor to man's understanding of
his universe. May this book serve in some manner to hasten that day.

There is, | hope, a wider audience for this book than the professional soldier.
The core group for which this book is written are the students, those who practice the
peripheral professions of war and must learn their trade and continually update and
expand their understanding of it. These students include the developers of weapons
and doctrine, the analysts and users of combat simulations, the civilian and soldier
managers of military programs, their counterparts in the defense industry, and even

academia.
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0. Introduction

0.A Can we Define the Question?

Is there a physics to warfare? Or perhaps a better way of asking that question
would be "Is there any scientific basis to describe the processes of war?" That may
still not be clear, so we shall examine the two key ideas in the question(s): science
and war.

The logical starting point is to examine the dictionary. The Random House
Dictionary’ defines science as:
"(1) a branch of knowledge or study dealing with a body of acts or
truths systematically arranged and showing the operation of general
laws."
and war as:
"(1) a major armed conflict as between nations."
The American Joint Chiefs of Staff defines neither in their Dictionary of Military Terms 2
while our chief competitors (until recently) the Soviet Union, provided a long
description definition of war® (voyna):
"War is an armed conflict between states (coalitions of states) or
between striving antagonistic classes within a state (civil war) to gain
their economic and political ends."

Finally, we find that physics* is
"The study of those aspects of nature which can be understood in a
fundamental way in terms of elementary principles and laws."

These dry definitions do indeed allow us to ask over questions in a (hopefully)
more meaningful way: Are these general laws or elementary principles - operating in
the armed conflicts between states? Obviously, | (and others) must have some reason
to believe that there are, | would not have written this book advancing to describe
some of our knowledge (and offer, our lack of it). Equally obviously, if | do not move
on to something a little less dry then their definitions, you, the reader, will cease to
read. ‘

0.B Lies, Lies, and Dammed Lies

Our common vision of the scientist is largely shaped by science fiction movies
that portray scientists as mad, cackling men (and occasionally women) who perform
diabolical experiments without regard for the social consequences of their acts. Part
of this is true. Scientists do perform experiments (and develop theory based on these
experiments) to uncover and understand the fundamental principles of the universe
around us - science and experiments are fundamentally linked! It is not generally true
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that scientists are either mad or cackling, and they are generally quite concerned about
the social consequence of their efforts - witness the volume of writings and efforts by
scientists about the efforts by scientists about the effects and morality of nuclear war.
In recent years, considerable consideration has been given to the social and political
efforts of science. As Michael Simon® notes in his review of Alan Chalmer's book
Science and Its Fabrication "the distinction between good and bad science is a useful
one, but it is not one that can be clearly drawn. The goal of science, as Chalmer
understands it, is not certainty but improvement or growth."

War, to most of us and including the soldier, is a terrible thing. That makes its
study a paradox. Clearly, we want to study it so that we may avoid its occurrence,
or given its occurrence, complete it in as limiting a fashion as possible. That is the
universal approach of the modern military professional. The negative side is that if we
understand war better, we may apply that understanding to practice it. This paradox
is a fundamental example of the two edged nature of knowledge in general and
science in particular.

Clearly, war has not been the subject of exhaustive scientific study. There are
several reasons for this, and | cannot delude the reader into thinking that my list of
reasons is exhaustion. | do believe they are illustrative and reasonably comprehensive,
however.

Because of its very terribleness, war does not attract scientists to study it. Nor,
are many soldiers scientist or visa versa. The nature of the two professions do not
allow them to mingle effectively. This does not mean that soldiers do not study war,
quite the contrary. Many soldiers are dedicated students and learned scholars of war,
but that knowledge tends to be historic and practical in nature. This study, over
several centuries, has produced considerable result and theory, but it is a scholarly
rather than a scientific type of knowledge. This must not be belittled. This knowledge
is important and we shall examine it not only later in this chapter, but throughout this
book as well.

As we have already stated, our interest here is the physics of war, or at least
of the processes of ground conflict, and this means in particular that we want to
examine those processes which are describable in a quantifiable manner. In simple, we
want to examine those parts of war that can be described in the exacting vocabulary
of mathematics. This is not easily done for two reasons.

First, the soldier is not, as a member of a profession, given to the daily use of

math as a tool. Like most of our citizenry, he (or she) is not generally adept at using

math as a tool for understanding and describing his world. This results both from our
cultural approach to the teaching (or non-teaching - see Appendix X) of math and to
practical, accomplishment orientation of his profession. Many professions have this
non mathematical character, but that should not preclude the soldier from seeking
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greater personél and professional knowledge from efforts like this one.

The second reason, which finally brings us to some meat among all this
philosophical rabbit food, is the fundamental linkage between science and experiment.
By its very nature, war is not truly amendable to experiment. We cannot, in the
interest of science, go into the laboratory and conduct war as an experiment. To
coolly conduct measured experiments in war where lives are taken is both ethically
and morally impossible. Nor can we make complete use of military field trials and
exercises as experiments for two reasons: first, to make detailed measurements of
such would completely compromise them - the influence of the observer is disastrous,
and second, these trials and exercises are not war and any knowledge that we gain
from them is fiercely tainted with uncertainty of the most vicious type. We do not
even know what the nature and magnitude of the uncertainties are.

Our only recourse therefore, is history. We can only use what data is available
from the battles and wars that have been fought in the past. As we have noted, this
is the principle approach of the modern professional soldier - to study the history of
war. Can we have however derive scientific knowledge from history?

I will not try to be exhaustive in this introductory chapter, but can sketch none
of the most obvious basis for what scientific knowledge we can derive from history
and thereby lay a basis for the mathematical theory that we will be describing in the
rest of this book.

Until recently, the numerical data on war was not readily accessible, if we can
say it is today. There are however, scholarly works of history that describe wars,
campaigns, and battles and in these works there are a few numbers. Because of the
largely theoretical nature of this book, we have limited our search for historical
numbers to sources which compile many battles and looked there for numbers
describing the battles. From these compilations, we developed databases of selected
battles. The criterion for selecting (and rejecting) battles was very simple - there had
to be a minimum amount of recorded numeric data about a battle in the compilation.
This culling process is extreme, it reduces the number to something on the order of
1-2 percent of the total battles. Thus, we immediately must view the resulting list
with great trepidation, who knows how we have inadvertently slanted and distorted
the view that we may derive from these data!

All of these concerns aside, let us at lest look at one, fairly general, set of
dates. This one is taken from a historical compilation of battles entitled Brassey's
Battles,® named after the company that published the compilation. We shall describe
the source, and the nature of the data base in question detail in Chapter IX, but for
now, we are primarily interested in what we may learn about these battles.

This database consists of 107 battles, one of our largest. The earliest battle is
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Marathon fought in -490 C.E.. The most recent battle is Goose Green, fought in 1987.
The basic data, consisting of the date, combatants, their initial and final (numerical)
strengths, and the durations of the battles (in days) are shown in Table 0.1.

Most of these battles were short affairs, lasting a day or less. A few were
longer. They represent only a small fraction of the battles fought in the last two-and-a-
half millennia, but, as given by our source, they are, for a human and therefore non-
exhaustive search, the only ones that have five pieces of numeric information: the
initial and final strengths of the two sides, and the duration of the battle. Actually, the
culling criteria as somewhat stronger than this - have also culled battles that did not
end in a controlled manner - no routs. With one exception, all these battles ended with
both armies enact. While there have been many battles that have turned into routs,
our intention here is to examine what we may hopefully call normal battles, even if
they may not prove with further study to be normal.

Our prescription, for now, will be to examine the contents of this database to
see if these are any describable patterns in the data here. We will not attempt, at this
time, to perform any type of statistical analysis of these data. What we are interested
in are clear patterns that would indicate the possibility of quantitative relationships.

First, examine the way that the force strengths of the battles are distributed by
the date of the battle. This is shown in Figure 0.1. The only pattern that we may see
here is that most of the battles were fought in the last 500 years. Is this meaningful?
Has civilization over the last five centuries become more warlike, or is this the result
of better, more thorough recordings. | suspect the latter is our meaningful explanation.

Next, examine the same force strengths, as a function of the battle's duration.
This is shown in Figure 0.2. Again, the only pattern that we discern is that most of
these battles were short - but we have already noted this. If we look at this data in
a Ing-log plot., Figure 0.3, we see a wider spread of the data, indicating more
v- ation, but no striking pattern. At best, we may only speculate that the shorter
be.iles seem more likely to have the data we need recorded. A leap of speculation
could be that most battles only last a day because of the difficulty of fighting at night,
and almost all last only a few days because of the intensity of battle.

We must recall that even during war, battles are relatively rare. Troops from
both sides must concentrate in the same locality at the same time. Except under
unusual operational circumstances, the commanders of both sides must want to fight.
Since the purpose of these meetings is too often a decision - | win, you loose, - we
would expect battles to be intense, and it is this very intensity that will make them
rare since the armies cannot fight another battle until they have rebuilt their strength.

How intense are these battles? To examine this, let us compare the ratio of
each sides final to initial strength. This ratio is just the fraction of surviving strength
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at the end of the battle. The forces in each battle have been arbitrarily divided into
two sides - Red and Blue. (Actually the division was decided by the authors of the
historical collection. The first side named in the description of the battle is the Blue
side.) | have made no attempt to determine which side won or lost, merely divided
them.

The cross plot of these ratio's is shown in Figure 0.4. Note that except for the
eight battles explicitly called out, none of thee battles end with either force having a
surviving force less than 60 percent of its original strength and the majority were
considerably more. Clearly then, only 8 out of 107 (less than 10 percent) of these
battles could be said to be particularly vicious.

But what is vicious? At the personal level, the two most obvious question are
"Did we win?", and "Was I/my friends/relations killed or wounded?" The first question
we will consider later in the book when we examine theories of winning. The second
guestion is one that we must inure ourselves against. As callous as it may seem, our
approach here must be to accept that some of the troops engaged in a battle will be
killed and content ourselves at this time with how many, functionally, that are not.
If we do just that, and take the data plotted in Figure 0.4, and ask in how many
battles was the servicing fraction between x and x+ —x, we get the distribution in
Figure 0.5. There are two distributions, one each for the blue and red forces. These
curves show what we had surmised from Figure 0.4, that few of these battles took
more than a 40 percent toll in strength.

We note that these two distributions are not identical, but are similar in shape.
Since the assignment of which force was on each side was arbitrary, we should not
expect any strong relationship between them. But if these two curves are similar, may
they not be perceived as two sets of random samples from the same distribution? At
this point, we have no reason not to view them as such, and to combine the two
curves. If we do this, and divide by the total number of forces (twice the number of
battles) we get the solid curve in Figure 0.6, which is just the joint frequency
distribution of the surviving fraction for these 107 battles.

The dashed curve in this figure is the integral of the frequency distribution. This
curve is obviously a negative exponential of the loss fraction ( = 1- surviving fraction.)
We may read the curve in the following manner: for any given surviving fraction value,
the probability that corresponds to the curve is the probability that the surviving
fraction will be smaller than the surviving fraction value. For example, there is a 20
percent probability that the surviving fraction after a battle (if we accept this data as
representative) will be 75 percent or less. Similarly, there is a 50 percent probability
that the surviving fraction after a battle will be about 87.5 percent or less (and
obviously, an equal probability that it will be more.). While this is surely a lot, it is a
great difference from the view of battles as duels to the death. Clearly, the
preservation of the force, if not of individual life, is a major consideration in these

0-5
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normal battles.

Let us now turn to examination of the structure of the loses and final force
strengths in terms of the initial force strengths. These data are plotted in Figure 0.6
for the Blue force. While there is no striking pattern for the loses, then most certainly
is for the final force strengths. As we may see, for initial force strengths, less the
about 150,000, there is a clear upper edge to the data, and very little spread to the
data as a whole. This behavior is repeated for the Red force, shown in Figure 0.7.

To confirm this, we again combined the two sets of data. In Figure 0.8, we plot
the loses to both sides in all battles, and find no obvious pattern. In Figure 0.9;
however, where we plot the final force strengths, there is an obvious pattern. Clearly,
there is an upper edge which looks remarkably straight, which seems to set an upper
limit on how much the final force strength is, and a less obvious, but still strong
indication of a lower limit. Further, there is very little spread to the data. On the basis
of just the knowledge that the final strength must be no greater than the initial
strength, we would expect the lower triangular half of the graph to be peppered with
data points. The skeptic may be tempted to advance that the sharp upper boundary
is just the straight line across the graph, but closer examination will show this
apparent straight line to have a slope less than one.

This data represents an historical foundation for a physics of warfare. Clearly,
the final force strength must be viewed as being functionally dependent on the initial
force strength. Equally clearly, it must also depend functionally on other factors, but
it is not obvious what these are from the figures we have presented here.

In the following chapters, we shall develop the mathematical basis of one of the
most compact of the few theories of attrition, that of Lanchester. Having done this to
a reasonable level, we will then reexamine these and other historical data in light of
the theory of attrition. Having made this comparison, we shall then broaden our scope
to examine other theories of attrition and warfare, and examine the uses of the theory
in practice.

Before commencin'g on this mathematical journey of theory, we shall finish this
chapter with a brief discussion of some of the fundamental principles of war as
developed by centuries of scholarly study.

0.C The Principles of War

_ The historical study of war by soldiers and historians has taken the form of
many theories of tactics, strategy, and rules of war. Previous attempts have even tried
to associate the use of mathematical models in understanding warfare. These
attempts, notably those of Jomini, have been roundly denounced by even more
students, notably Clausewitz himself. This debate appears to have at its heart the
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fundamental values of the soldier. The adherents of these theories and methods see
them as useful for understanding the practice of war. By their nature they attempt to
reduce the environment of the battlefield and the theater of war to simple chunks that
can be analyzed. This simplicity is the root of their critics' complaints that these
chunks are too simple, are unrealistic, and misleading. This illustrates the fundamental
difference between the practical necessity imposed on the field soldier and the ivory
tower, start simple and improve, approach of the scientist.

Interestingly enough, despite the aversion to the application of quantitative
analysis to war, all students of war advance some form of analytical discipline. In
Clausewitz's case, it is called Critical Analysis or Kritik. We must conclude that the
soldier is not blind to the value of analysis, but will always temper his valuation of it
to its accuracy and applicability in his sternly pragmatic world view. The ultimate test

of the scientist applies strongly here - is it accurate? In this regard, there is common

ground.

Of the analyses conducted over the years, the most profound products have
been the Principles of War. These principles are the direct result of the evolution of
decisive, persisting (in Jones' terminology) and even total war that has evolved on the
past few centuries. Their applicability beyond the scope of conventional warfare to
non conventional, guerrilla, or even economic warfare has been argued, not without
elements of general validity. Even Clausewitz, who decried the tendency to view
warfare in terms of fixed rules because of his vision of its chaotic nature, found some
guiding principles to be necessary for any comprehensive theory. Because of their
fundamental importance to forming a vision of warfare, we present them here in a
modified form as they appear in the U.S. Army's Field Manual 100-5, Operations:’

The Principle of the Objective states that every military operation be
directed towards a clearly defined, decisive, and attainable objective. This means
that no action should be taken in warfare that does not have some definite, even
explicit, goal, and that that goal be meaningful, and attainable. Obviously, this
implies that there is some common plan for the force and that that plan is shared,
clear, and realistic. _

The Principle of Offensive states that the most effective and decisive way
to attain a goal is by taking offensive action and/or by maintaining the initiative.
Initiative is a concept based on the idea of being able to take actions that force
one's opponent to respond to, rather than the other way about., Offensive action,
which may be strategic and/or tactical, is viewed as being decisive. While it has
been possible to maintain initiative while being purely defensive, these cases are
viewed as being historically rare. Of note is the special case of being strategically
offensive while being tactically defensive. The situation leading to the Battle of the
Alamo is an example. This principle obviously builds on the Principle of the
Objective.



i

The Principle of Mass (or Concentration) states that combat power should
be concentrated at the decisive place and time. In this case, combat power may
not just mean superior numbers, but superior fighting capability. This principle
does not suggest that forces should be concentrated all of the time. It does suggest
that forces should be concentrated at the right place at the right time to achieve
decisive results. This principle is most obviously linked to the theories of attrition
that we shall describe in subsequent chapters.

The Principle of Economy of Force states that only minimal combat power
should be allocated to secondary efforts. This means that the army may be divided
to pursue several goals but that the Principle of Mass should apply for the primary
effort. While clearly permitting division, this principle surfaces the difficulty of
knowing exactly what effort will be primary while providing enough force to
achieve the secondary goals.

The Principle of Maneuver states that one's enemy may be placed in a
position of disadvantage through the flexible application of combat power. At a
superficial level, this principle seems to suggest that by moving one's forces, the
enemy is placed at a disadvantage, thus maintaining or seizing the initiative. This
principle means this, of course, but it also implies a flexibility to move and realign
one's forces. )

The Principle of Unity of Command states that there be only one
responsible commander who direct the efforts to achieve an objective. This
Principle addresses a question of biblical importance, how to serve two masters?
Additionally, it applies the Principles of Mass and Economy of Force, suggesting
the necessity of common goals, clear objectives, and a rigorous chain of
responsibility.

The Principle of Security dictates that one must not allow the enemy to
acquire an unexpected advantage. In one sense, this is the opposite of the Principle
of Maneuver applied to one's own forces - don't allow the enemy to gain
advantage. At the same time, it states that initiative must not be lost, and
pragmatically, Don't Be Surprised!

The Principle of Surprise states that it is desirable to strike one's enemy
at a time and/or place, and/or in a manner that he is physically or psychologically
unprepared for. This is the reciprocal of the Principle of Security.

‘The Principle of Simplicity states that plans should be clear and
uncomplicated and that orders be concise and understandable. This is a pragmatic
reinforcement to the Principle of the Objective. It is dignified with a special
acronym: KISS - Keep It Simple, Stupid!




These are the Principles of War. Other nations have other sets of principles, but
these tend to have great commonality in form and content, if not number and name.
These principle form a fairly comprehensive set of rules for conducting military
operations, although we see that they might equally well be applied to many human
activities. They are a set in the sense that they are interrelated and reinforcing. They
are not quantifiable, and are analytic only in a subjective sense. Because they are an
embodiment of a theory of warfare however, they must be considered in any
quantitative formulation of war, and we shall refer to them during the progress of this

book.
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|. Definitions and Background

I.A. Introduction

This book is not per se a text on modeling in the general sense.- This chapter
however, is included to provide the reader with either a (bare) minimum of background
on the general topic, or a commonalty of understanding of definitions, descriptions,
etc.

My terms do not, in general, always agree with those in common use in
different sections of the community. The techniques and vocabulary of modeling (and
simulation and gaming) in physics are different from those used in other disciplines
(such as Operations Research.) Even those who are familiar with the discipline wiill
quickly find that | have not been loath to invent new terms or develop new techniques
when the occasion warrants and | could find no historical usage.

I.B Definitions and Descriptions

The description of the mechanics of warfare is a task in modeling and
simulation. These latter terms are frequently used synonymously; the purpose of this
section is to address the definitions and descriptions of these terms.

First, a model is a mapping of reality into comprehensibility. A model may
always be expressed in informational symbology, which include, but are not limited
to, words and mathematics. Griff Callahan of Georgia Tech uses the definition:

"Modeling is creating representations of specific human
perceptions of reality, using imitative or analogous physical
or abstract systems to serve as a basis for language.™

In simplest terms, a model is a representation of some aspect of reality in terms
which can be absorbed and manipulated by the human mind.

In general, a model will only express one facet of reality, although that facet
may be complex. ldeally, a model will also be invertible or reversible. Unfortunately,
this is not always the case.

The process of developing a model is known as modeling.

A simulation, on the other hand, is a tool for expressing the world in
understandable terms, constructed from one or more models and a set of logical rules
for relating models’ interaction. Dr. Callahan uses the definition:

"Simulation is the use of computers or other devices as
tools for experimentation with models."

Definitions - 1




Finally, gaming is the use of one or more simulations to gain understanding or
insight. Dr. Callahan uses the definition:
"Gaming is simulation involving human operators in a
competition played according to rules and decided by
superior skills or good fortune."

To illustrate the differences among these three, let us consider the use of a
‘model’ airplane and a wind tunnel to understand the flight characteristics of the ‘real’
airplane. The 'model’ airplane is a model of the real airplane, and the wind tunnel is
a model of the environment that the “real’ airplane operates in - the atmosphere. The
combination of ‘model” airplane and wind tunnel are a simulation of the flight of the
‘real’ airplane in its ‘real’ environment. The use of the simuilation - operation of the
wind tunnel with the ‘model” airplane in it - is gaming of the flight of the airplane.

In summary, we may distinguish among models, simulations, and gaming by
their nature. A model is abstract, a simulation is concrete (in the sense of an
implementation of one or more models,) and gaming is active (the simulation (or tool)
is used.) Although we may, and many practitioners do, use these terms almost
synonymously, we shall attempt to make distinctions among them. Models are
representations of reality while simulations are collections of one or more models for
experimental or calculational purposes. Fundamentally, simulations are used to
generate numbers from the models.

In practice, the distinction among the three terms becomes indistinct. What
- does remain distinct however, are the actions associated with these:

® modeling is the development of models,

® simulating is the construction of simulations, and

® gaming is the pursuit of understanding.

{Being the author allows me from time to time to insert extraneous and even
outre comments, often on nonquantifiable subjects such as morals or ethics. Many
of these comments are my opinions, but being in charge, they appear in black and
white, and the unwary reader may erroneously decide that | am passing on arcane
knowledge. Sometimes this will be the case; other times, | will only be relating war
stories or expressing sour grapes.

One of the loudest of my pet peeves is the question of documentation of a
model versus documentation of a simulation. The documentation of a model should
be complete enough that a simulation can be constructed embodying it. The
documentation of a simulation should be sufficiently complete that the documentation
of the model(s) can either be found or is included, and the logical interplay of the
model(s) in the simulation is fully explained. Alternately, the documentation of a
simulation should be sufficiently complete that the average simulationist can
reconstruct the simulation from the documentation (and its references.) To my mind

Definitions - 2



this is the ultimate test of documentation; completeness for a simulation - can
someone who has never used the simulation, or built a similar simulation, build this
simulation? If the answer is not yes, then the documentation is inadequate.}

I.C. A Distinctive, lllustrative Example

A model of a gunman’s performance may be a probability of kill as a
mathematical function of several variables such as the accuracy of the aim and fire,
the muzzle velocity, the shape and mass of the bullet, the range to the target, the
atmospheric density and wind velocity, the intensity and spectrum of the light
conditions in the area, the size and shape of the target, the density and strength of
the target’s constituent materials, and the response of the target to a hit (at a given
place.) The model is supported by assumptions, conditions, and (presumably,)
verification data. (We shall discuss the theory of mathematical duels in this book.
The mathematical duel, which we shall simply call a duel in the chapter dealing with
mathematical duels, is a special class of war models. Regretfully, there is an
ambiguity in the use of the term "duel”. Whenever possible, we will use the term
formal duel to represent an historical duel; the term duel as a synonym for a
mathematical duel.)

We may use this model to build a simulation of a formal duel between two
gentlemen. (A formal duel differs from a gunfight in that shots are executed
according to a set formula (or model.) Only gentlemen fight duels.) As a simplifica-
tion, we shall assume that the duel continues until one (or both) of the gunmen is
incapacitated or dead. The simulation may be diagrammed as in Figure (I-1).

If we examine this diagram, we notice that random numbers are generated in
the simulation to determine the outcome of each exchange of gunfire. Technically,
there must be a model in the simulation to generate random numbers of the proper
distribution, but such models are not, at this time, germane to this discussion.
Further, most computer libraries, and many simulation programs (such as LOTUS
1-2-3, TK! Solver, and MATHCAD,) incorporate one or more random number
generators. While random number generators are much used in warfare simulations,
their anatomy and physiology are not subjects central to the modeling of warfare.
Interested readers should consult a standard text on numerical methods. (e.g.
Carnahan, Luther and Wilkes?) This simulation can be used to investigate the likely
outcome of a formal duel between two gunmen (i.e. the duel may be gamed.) We
note again that the simulation incorporates the model(s) in a logical framework of rules
that may be used to game a ‘real world’ event, either past or future, for the purpose
of generating understanding.

In passing, we also note that the development of models (modeling) implies the
reverse gaming of a simulation.

Definitions - 3




Event Sequence Simulation

I Generate R1, R2 pr—————

Exchange Shots I

A or B Dead?

N
Honor Satisfied?
| Y

GGATECH AL

Figure I-1. Duel Simulation

[.D. Types of Simulations

While many authors devote much space to a taxonomy of simulations (or
models, depending on their terminology and definitions,®) we shall here only briefly
describe the different types of warfare simulations.

The most complex of warfare simulations are the iconic, where the model is
itself the simulation.

Another type of simulation is the analog simulation; this type of simulation
includes parables.

The largest category of types of simulations are the symbolic simulations.
These include mechanistic simulations {such as a slide rule,) informational simulations
(such as a computer program,) and mixed simulations (such as board games.)
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Informational (and mixed) simulations may be either deterministic or stochastic
(probabilistic.) Deterministic simulations are those of pure cause and effect; they are
not infrequently simulations of the expected values of stochastic models (such as the
Lanchester Differential Equations.) Stochastic simulations, also known as Monte Carlo
simulations, are usually sequenced by event or time ordering (or, in some cases, both.)

The simulation of the formal duel described in Chapter I.C is an example of an
event sequenced simulation. A simulation of a gunfight (where the execution of shots
does not occur on a one-to-one, common time start basis,) could be either event or
time sequenced (since the shots are not fired simultaneously.) In practice, time and
event sequencing are equivalent in philosophy, but care must be taken to ensure that
the simulation does not incorrectly favor one side over the other (introduce "unreal’
results) because of the choice of sequencing. This is shown in Figure (I-2). Notice
that the sequences of the events are different. This can represent a problem only if
the ‘real world’ is misrepresented. For example, in an event sequenced gunfight

Event vs. Time Sequencing

Two processes, A and B, have events Ai and
Bj, which occur at times T(Ai) and T(Bj)

TE) . TE? T(e3) T(®4)

] l I
I P I I I I
T(A1) T(A2) T(A3) T(A4) T(A5)

1 1 |
Event Sequenced Simulations execute the
events in the order of their occurrence:
T(A1),T(B1),T(A2),T(A3),T(B2),T(A4),T(B3),

Time Sequenced Simulations execute all
events in a time interval as if they were
simultaneous:
T(A1),T(A2),T(B1);T(A3),T(A4),T(B2);T(A5),

GATECH Al

Figure I-2. Sequencing Choices
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simulation, a gunman may be allowed to fire after he has been killed. Alternately, in
a time sequenced gunfight simulation, the likelihood of both gunfighters dying may be
skewed by stopping the simulation too soon (while the killing bullet is in flight. This
is an extreme example, but the more complex the simulation, the more likely that such

unrealities will creep in.)
I.E. Characteristics of Simulations

Simulations are also often described by characteristics such as the scale of the
simulation. Two simulations may emulate combat between two companies of troops,
but one simulaan may use combat units which are squads while the other simulation
may use combat units which are individual troops (or even weapon systems.)

Other characteristics are abstraction versus detail or resolution versus detail.
Not all models in the simulation may incorporate the same level of detail in all aspects.

A further consideration is the representation of time and space. Few
simulations represent time and/or space continuously. In event sequenced simula-
tions, time dependence may even be hidden or removed. In simulations of only
ground troops (at a relatively low level of resolution,) space may be represented only
two dimensionally.

Because any simulation must incorporate logical rules to turn itself off, outcome
assessment is a characteristic of simulations. As we shall see in the next chapter
when we discuss Lanchester’s work, a simulation using Lanchester’s equations as a
model may use a conclusion (total attrition or annihilation of one force) as an outcome
assessment.

Finally, simulations may be classified (those used for war gaming at least,) on
the basis of how they represent the force. Most conflict simulations are force-on-
force; these however may be many-on-many, few-on-few, or one-on-one. Some
conflict simulations are one sided (often artillery simulations.) A special class of
conflict simulations used in the design of weapons are the engineering simulations.

I.F. War and Simulation

So far, most of our terminology has been fairly general. We now need to get
a bit more specific about war. War has many levels, processes and components.
Many of these are amenable to modeling and simulation, but not all of them are
represented by models in the formal sense. This may seem contradictory, but will
become clearer as we continue.

If we take the simple national view of war, then prior to the outbreak of war,
there was some opposite non-war state - peace. That state ends in some fashion for
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tow (or more) nations and war begins. The common contemporary view, ala
Clausewitz, is that this transition results from politics. The causes of war,* and even
the early stages of war,® have been studied and we shall not dwell on them here.?

In modern states, there will be standing (i.e., existing) military forces which,
depending on the magnitude and duration of the war, may have to be augmented.
These forces must be equipped and supplied, trained and moved to the battle, and
battles fought. Clausewitz tells us, in a rather dismissive manner, that those actions
that are not associated with battles (and their interactions,) are merely preparations
for war. War proper is a psychological and physical endeavor for victory.

While there is a great deal of merit to this division, modern experience leads us
to believe that war is a national experience that goes far beyond the interaction of
military forces on the battlefield. It is useful, however, to drawn an increasing series
of distinctions between the processes of "war", and the "preparation for war".

To accomplish this series, it is useful to introduce a hierarchial system of

strategic (or war) levels as propounded by Luttwak:®

® Grand Strategic,

® Theater,

® Operational,

® Tactical, and

® Technical.
The Grand Strategic level is concerned with the question of war in the large. It is
inherently political and economic, as well as military, in nature. The Theater level is
concerned with some geographic region where conflict does or may occur. This level
serves as a bridge between the highly political Grand Strategy level and the highly
military Operational level.

The Operational level is "a middle ground where methods of war contend and
battles unfold." The effects at this level are characterized by the contention of armed
forces. There are two extremes at this level: attrition and relational maneuver.
Neither exists in a pure state. Attritional warfare is the literal grinding away of the
enemy’s forces, both men and equipment. Relational maneuver warfare (which is
basically the same as Liddell Hart’s indirect approach,?) seeks to incapacitate the
enemy by systemic disruption. These two approaches, attrition and disruption, are
fundamental to battle. In contemporary terms, they may be thought of as being
"bottoms up” and "top down" approaches to war. Attrition is a bottoms up approach
to winning war by wearing down the number of basic military components that make
up the military forces. Relational maneuver is a top down approach to prevent the
enemy from using his force effectively and decisively.

® We shall consider several models associated with the non-combat aspects of war in later
chapters.
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Both of these approaches are organizationally oriented. Military forces are not
simple collections of men and equipment. These forces have an organizational
structure to make them effective. Denial of that effectiveness has two fundamental
forms - attrition and disruption. Attrition reduces the effectiveness of a military
organization through its component parts. Disruption reduces the effectiveness at the
organizational level itself.

The tactical level of war (in Luttwak’s hierarchy,) is primarily concerned with
the battlefield interactions of these organizations (admittedly at a low level,) and their
components. The technical level is primarily concerned with the interactions of the
components, usually on a one-on-one basis, and is largely dominated by matters of
physics, engineering, and doctrine. The majority of this book is concerned with
discussing some analytical tools and techniques for describing these two levels of

war.

At the Grand Strategy level of war, the primary concern is political and
economic. Questions concerning the production (and development) of war materials,
their transport, and the recruitment, training, and transport of troops are amenable to
modeling and simuiation. Indeed, there are extensive simulations of these process in
place. Additionally, there are political and national will/morale processes, which, being
human dominated, are less amenable to modeling and simulation. At this level, the
interactions of the military forces have importance primarily as they effect these latter
processes although there are exceptions such as the tactical questions of convoy
attrition on supply.®

As we proceed down the hierarchy, the logistical questions of supply, transport
and training become less important and the interactions of the military forces become
more important. This trend culminates at the tactical and technical levels where the
availability of men and materials, their training state and the nature of tactical doctrine
become essentially parametric.

Except at the technical level, which is dominated by physical processes, all of
these levels have considerable psychological or human components. At the tactical
level, morale and willingness to fight (or surrender,) are potentially important factors,
and the reader must be warned that it is in this psychologi: il area that models and
simulations of war, at whatever level, are most primitive and ad hoc. As we shall see,
the tactical models that we discuss do not, in and of themselves, consider termination
of combat except in limiting mathematical form.

®* The convoy question is a classic of military operations research. Although we are concerned here
with the Grand Strategy level of war, the effective transportation of men and materiel across oceans
has an operational/tactical component concerned with protecting the transporting vessels from
attrition.
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Admittedly, some of the technical models that we will discuss do have human
components, but these components are essentially physiological rather than
psychological in nature. In general, the psychological aspects and processes of war
are those which are the least represented in combat simulations.® '

I.G. Combat and Simulations

As we have previously stated, much of this book is concerned with the tactical
and technical levels of war. Our central focus will be on models of combat processes.
Although we shall speak in general of combat, most of our discussion will be
concerned with duels® or engagements, and battles.® To a slight extent, we shall be
concerned with the operational level of war which is primarily concerned with
campaigns. Campaigns may be thought of as an orchestrated (hopefully) series of
battles. What raises this series above the tactical level is the non-combat processes
which occur (e.g., relational maneuver.)

At the technical and tactical levels of war, the primary modeling interest is the
interactions between the individual weapon systems. One-on-one engagements are
usually considered to be technical for Army weapons, but tactical for Air Force and
Navy weapons. This can be seen easily by considering that most warships and
warplanes carry more than one weapon system.

The interactions between two weapon systems (with crew,) or between a
weapon system with crew and a man (men) or vehicle are probabilistic in nature,
That is, if an infantryman fires his rifle at an enemy rifleman, there is some probability
that a hit will occur. This probabilistic nature is fundamental to our approach to
combat processes, and largely determines the two approaches to the modeling and
simulation of combat.

¢ An actual argument may be made that there are social processes in the simulation community
that act to prevent development and inclusion of psychological models.

¢ Duels, as used hereafter, have a fairly rigorous mathematical formulation. They are considerably
more general than our picture here of two men shooting at each other. We shall briefly review duel
theory in a later chapter.

¢ We will make a somewhat confusing use of the terms engagement and battle. We shall use the
term engagement to mean both the firing of a weapon at a target, and the overall combat processes
in combat between two or more forces. The term battle will tend to be reserved for one or more
engagements (second meaning) and possibly maneuver, reinforcement, resupply, etc.

f This does not mean that there are combat processes or subprocesses that are actually or

practically deterministic. They do exist, as we shall see. In a general sense, however, they are the
exception rather than the rule.
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These two basic approaches are specification and aggregation of the forces.
The specification approach is more obviously probabilistic in nature. For this reason,
simulations built using this approach are commonly referred to as Monte Carlo or
Stochastic simulations. Under this approach, each individual weapon system/platform
is represented explicitty. Combat processes are represented individually and
probabilistically. That is, each time an infantryman fires at an enemy, the simulation
generates a random number to determine whether a hit occurs or not. A key technical
concern of these simulations is thus the generation of these random numbers.
Because of the individual representation of each weapon system, these simulations
tend to be quite large in size and may require multiple executions to arrive at
statistically significant results.

The aggregation approach lumps together weapon systems. Forces are usually
represented by their strengths (numbers.) Different types of aggregation may be used
on the basis of weapon system and/or organization type. Combat processes are
represented by rate of change of force strength. These rates are usually the expected
values (and occasionally the standard deviations,) of the relevant combat processes.
For this reason, simulations based on aggregation are often referred to as deterministic
or expected value. These simulations may be smaller in size than specification
simulations, and generally do not require multiple executions. Key technical concerns
with aggregation simulations are how the rates are calculated from the combat
process models, and the form and technique of solution of the force strength

relations.

In general, the same probabilistic combat process models go into both types of
simulations. The two types of simulations differ in how the expected values (and
standard deviations,) of the processes which make up the entire battle are calculated.
In Monte Carlo simulations, the expected values for the battle are calculated by the
simulation. In aggregated simulations, the expected values of individual engagements
are calculated before the simulation is executed. There are several significant
differences between these two types of simulations, but the most important
commonality is that they share combat process models. Thus, if we know these
models, we know what goes into each type of simulation.

The aggregation models of the changes in force strength are the philosophical
basis for the aggregated simulations, and arguably, for the Monte Carlo simulations
as well. From a theoretical standpoint, these models are essentially all attrition
models - the other combat processes do not have the theoretical framework that

attrition does!

The theory for these models was initiated at the start of the Twentieth Century
by four men. One of them, Lanchester, is generally credited with the basic work
although, as we shall see, the question of who was the founder of attrition theory is
largely moot. The next chapter reviews the lives and contributions of these four
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pioneers.
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Il. LITERATURE REVIEW |

I1LA. Introduction

This chapter is the first of several which review the literature of the dynamics
of warfare. This chapter is devoted to the origins of that literature. As such, it is
devoted to the work of the four founders of the discipline: Lanchester, Osipov, Fiske,
and Chase; an Englishman, a Russian, and two Americans.

Il.B. Frederick William Lanchester

Who is this man whose name is uniquely associated with the dynamics of
warfare? What little' we know indicates that Lanchester was a Research and
Development engineer of great accomplishment, a pioneer in the development of
automobiles, aircraft, and operations research. The latter is of primary interest here.

In retrospect and in the context of our own day, it seems obvious now that
Lanchester continuously sought out problems and solved them, but was not greatly
concerned with turning his solutions to practical applications. in this he typifies the
developing discipline of bellum dynamics; he pursued (what are now) academic
problems without the benefit of an academic environment. As a result, many of his
accomplishments found no recognition until years later; indeed, his efforts consistently
verged on the edge of failure because of their non-application to Civilization’s affairs.
His work on warfare dynamics typifies this; performed during World War |, it found
little or no application during World War il and recognition only in the years following
that war.?

This is not to portray that the man was a failure. Rather, he was draped in
most of the scientific honors that Imperial England could bestow save only
knighthood. Only in the area of economic success could Lanchester be reckoned a
failure, especially in the automobile industry.

It is, however, in the field of operations research that he has become a
demigod, immortalized in the uitimate award of that field.

The seminal contribution of Lanchester to operations research is contained in

* Until recently, it was commonly believed that Lanchester's theories were not widely known.
However, the recently {19887?) discovered correspondence of (then) Captain J. V. Chase, USN, of
1921 indicates, at least, his, and presumably, his correspondent’s familiarity with the concepts. It
seems reasonable that the work of Lanchester enjoyed some attention within the officer corps of the
U.S. Navy prior to World War Il. It was only after that war, possibly due to the development of the
digital computer, that an industry based on Lanchester’s work came into being.
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his book Aircraft in Warfare: The Dawn of the Fourth Arm published in 1916,%2 now
sadly out of print and difficult to find in any but the most venerable of libraries.
(Indeed, the copy that | was able to study was provided under interlibrary loan from
the United States Military Academy library.)

This work runs to nineteen chapters, of which V, VI, and XVIII are most
relevant to the subject at hand. The foliowing text presents a brief outline of the
material contained in those chapters, as it applies to Bellum Mechanics.

The Principle of Concentration which underlies what would become known as

the Lanchester Equations begins Chapter V, dated October 21, 1914.

The Principle of Concentration: the force with the greater

strength, all other factors being equal, will inflict the greater

damage.
This principle is illustrated by the difference between ancient and modern warfare.
In ancient warfare, combat is typified by an essentially linear interaction of troops at
a combat interface engaged in a one-on-one (short range) manner. (The use of long
range weapons such as the crossbow or the longbow is conveniently ignored.) In
modern warfare, combat is typified by a more areal interaction of troops in @ many-on-
many (long range) manner.

The Principle of Concentration leads directly to the definition of the Quadratic
Lanchester Differential Equation:

"If, we assume equal individual fighting value, and the
combatants otherwise (as to ‘cover,” etc.) on terms of
equality, each man will in a given time score, on the
average, a certain number of hits that are effective;
consequently, the number of men knocked out per unit time
will be directly proportional to the numeric strength of the
opposing force. Putting this in mathematical language, and
employing symbol b to represent the numerical strength of
the ‘Blue’ force and r for the ‘Red’, we have:

db
b _ .. . 1 (11.B-1)
7 rc..(1)
and
I bk o (11.B-7)
dt

in which t is time and c and k are constants (c = k if the
fighting values of the individual forces are equal).”
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{In contemporary terms, the constants c and k are called attrition or kill rates. They
will be designated throughout this book by Greek letters, usually a and R.}

The Principle of Concentration is illustrated by an example: Consider two forces
of 1000 men each. The red force is divided into two units of 500 men each which
serially engage the single (1000 man) unit of the blue force. {Lanchester introduces
his differential equations and the state solutions to them, but not the explicit time
solutions. We shall develop these in Chapter Ill, but we introduce here the state
solution of the Quadratic Lanchester Differential Equation: :

B®- B = % (42 - AD) (11.B-3)

where: B, A are the force strengths of the 'Blue’ and 'Red’ (Amber) forces,

respectively,
B,, A, are the initial force strengths of the ’Blue’ and 'Red’ forces,

respectively, and
a, R are the attrition rates (kills per unit time per man) for the 'Blue’ force
against the ‘Red’ force, and the ‘Red’ force against the "Blue’ force, respectively.

If we take the attrition rates to be equal, then the two serial combats may be
modelled:

First Engagement
B, = 1000 A, = 500
B = 866 A =0
Second Engagement
B, = 866 A, = 500
B = 707 A =0
This example, which depicts the Blue force totally destroying the Red force (100%

loss) with only moderate loss {30%) to itself by being able to concentrate, illustrates
the Principle of Concentration and supports the axiom of war that forces are not to
be divided.

It seems equally obvious that this example is for illustrative purposes only.
Battles do not proceed (usually - we discuss this in a later chapter) to the complete
destruction of one force (which Lanchester calls a conclusion.) Unfortunately,
Lanchester introduces, almost immediately, this mathematical concept of victory
prediction as complete attrition of one force - the concept remains with us to this day.

in his book, Lanchester presents a graph to depict the general weakness of a
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divided force. Rather than reproduce the graph here, we instead take an algebraic
approach. Again let the initial force strengths of B and A be the same, and let the
attrition rates for the two forces be equal. We rewrite the state solution, Equation

(11.B-3), in the form
BZ - BO = A2 - AO' o (11.B-4)

(We have dropped the attrition rates @ and B since they are equal and cancel - the
ratio a/R has a value of one.)

If the battle is fought through to a conclusion, then one of the two forces is
completely attrited. Since the initial force strengths are givens, the 'victor’ is entirely
decided by the sign of the right hand side of this equation. If the right hand side is
positive, the Blue force is the victor (or survivor); if negative, the Red force is the
victor: if zero, a draw occurs {which presumably ends in mutual destruction!)

Since the combat occurs serially, we may write the initial Red force strength
squared as

A2 = N2 X%+ N2 (1 - X)P, (11.B-5)

where N is the initial total strength of the Red force, and X is the fraction of the Red
force in the first unit. S

Since the initial strength of the Blue force is also N, the state solution, Equation
(11.B.-4) may be rewritten, using Equation (lI.B-5), as

B2 - 42 = N2 (2X - 2X2). (11.B-6)

We may immediately see from Equation (Il.B-6) that any division of the Red force
results in a Blue force victory (assuming the combat is carried to a conclusion) since

2X - 2x2>0,X<1, (11.B-7)

Only if X = 1 (an undivided Red force) does the combat become a draw.

We may further see that Blue force losses are minimized when X = 0.5 (an
even division.) This example addresses only the case where the two forces and their
attrition rates are equal. The Quadratic Lanchester Law - Principle of Concentration
can be used to develop cases which predict an advantage for the division of forces.
An example of this would be a division of the Red force where part of the force is
used to execute a flank attack on the Blue force. (The combat is now not serial, but
staggered.) In this case, it is convenient to write the state solution in the form
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g2 - B 42 . BZ - B AZ. (11.B-8)
« o

The initial Red force strength squared, times the ratio of attrition rates, is

Ba2-B ppyz. B N2y xp (11.B-9)
o y @y

where a,, a, are the attrition rates against the frontal attack and flank attack units,
respectively. (Note that the attrition rate of the Red force against the Blue force is the
same for both the frontal and flank attack units (i.e. B); it is the attrition rate(s) of the
Blue force against the Red force that changes with force engaged.)

If, for convenience, we assume that the attrition rates for frontal attack are the
same for both forces, and that the forces again have the same initial force strength,
then we may write

B2-A2-N2(1 -Xx2) - B A2 (1 -x) (1.B-10)
o2

This equation shows that (for example,) if 10% of the Red force is put into the flank
attack, and if the vulnerability of that force to attrition by the Blue force is reduced,
through surprise or whatever, by a factor of at least 20, then the victory will be Red’s

“rather than Blue’s.

Lanchester is apologist in defending the validity of counting the humbers which
comprise the forces on the grounds that the counting will be done anyway. He
further asserts that training and morale are not suited to theoretical discussion, the
performance of weapons is. The use of weapons in combat is dependent on the
morale and training of the troops. If the troops are not trained, they cannot use their
weapons. Nor, if their morale suffers, are they likely to use their weapons. It is not
that these have no effect; rather, Lanchester asserts, they are not amenable to
analysis. The question of what constitutes the strength of a unit is best expressed by
two quotes:

"The fighting strengths of the two forces are equal when

the square of the numeric strength, multiplied by the

fighting value of the individual units, are equal.”
and

"The fighting strength of a force may be broadly defined as

proportional to the square of its numerical strength

multiplied by the fighting value of its individual units.”
This is basically the same as we demonstrated in the previous example for adding
forces.
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If the attrition rate of a machine gun is 16 times that of a rifleman, then 250
machine guns (with crews) have the force strength of 1000 riflemen. In an
engagement between a force of riflemen and a force of machine guns, the individual
machine gun will (on the average) receive four times as much fire as an individual
rifleman would under the circumstances. This is true if the fire of the riflemen is
aimed (as in the Boer War - Lanchester’s example.)

If on the other hand, fire is distributed without such pinpoint aiming over the
area covered by the force, then the machine gun will receive only slightly greater fire
than a single rifleman would (given a slightly larger area for the machine gun,) and
may actually be less. For example, say that both forces hold an area of 10 square
kilometers. This equates to 1,000 m? per rifleman or 4,000 m? per machine gun.
Both are subjected to fire from an area weapon with an area of effectiveness of 100
m2. This translates into an attrition rate of 0.1 rifleman per fire, but only 0.025
machine guns per fire.

This line of reasoning leads to the Linear Lanchester Differential Equations:

a4 -a A B,

“1; v (I.B-11)
9B _ _p B 4,

dt

where A and B are the force strengths of the Red and Blue forces respectively, and
a and R are the attrition rates. {Note that these a and B are different from the
previous ones for the Quadratic Lanchester Differential Equation.} Lanchester notes
that in this case where fire is directed against an area and not against an individual,
the rate of loss is independent of numbers and dependent only on the efficiency of the
weapons. In this case, there is no value in concentration. This case is cited as being
more appropriate for describing ancient combat, not because the weapons are long
range, but because the units were only engaged along a linear interface and thus the
numbers engaged at any moment, on either side, were approximately equal. We may
note however, that in modern terms, the Linear Lanchester Differential Equations are
normally appropriate for describing the use of what the Russians call Weapons of
Mass Destruction, in particular nuclear and chemical weapons. (Whether they are
appropriate for biological weapons depends on the exact vector(s). We shall comment
further on this in a later chapter.)

It is interesting to note that even in ancient combat, there appears to be
advantage in concentration in the line. Notable ancient success stories such as the
Greek phalanx and the Roman legion enjoyed considerable increase in force strength
by, in effect, concentrating more men into the linear interface. Notably, this was the
result of better tactics, training, doctrine, and/or morale, which Lanchester states are
not amenable to analysis.
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The principle historical analysis presented by Lanchester to illustrate the
Quadratic Law and the Principle of Concentration is the Battle of Trafalgar (1805).
Here the British fleet (40 ships) under Admiral Lord Nelson divided the French Fleet
(46 ships) and engaged the rear half at a force ratio of 32:23. This gave a total force
strength of

British French
(32)? + (8)? (23)? + (23)2
1088 1058

which should, if carried to a conclusion, have resulted in a draw.

The dynamics of ship motion were such that a significant period of time would
be required for the front half of the French fleet to sail back to the aid of its rear half.
Further, Nelson used 8 of his ships to slow this process. Thus, in the main battle
area, the force strength ratio was ’

British - French
(32)2 (23)2
1024 529

Which gives a force strength ratio, British to French of approximately 2:1. This
- analysis is based on an operational memorandum prepared by Nelson before the battle
and the actual forces are somewhat different. The outcome was not.

1. McCloskey, Joseph F., "Of Horseless Carriages, Flying Machines, and Operations Research”,
Operations Research, 4 141-147, 1956.

2. Lanchester, Frederick W., Aircraft in Warfare: The Dawn of the Fourth Arm, Constable and
Company, LTD., London, 1916.
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[1.C. Osipov

In their book Forecasting in Military Affairs, Chuyev and Mikhaylov' devote
approximately two pages (out of 230) to the area of Lanchester’s equation as partial
contents of a section on Differential Equation Models in a chapter on Military
Formalism models. Most of that two pages of text consists of two example: one is
concerned with the Quadratic Lanchester Differential Equations and their state
solution, and the other is concerned with a transport theory outgrowth (which we
shall treat in a later chapter.) No mention is made of the Linear Lanchester Differential
Equations, nor does the example present any numeric data (a relative rarity among
Russian authors who seem enamored with including numerous tables of data in their
works -perhaps an indication of the lack of computational capability avail-able to the
student? Or a potential embarrassment to the state since historic casualty data would

be needed?)

What is most startling in these two pages is the claim that the "Lanchester
equations"” had been put forward by Osipov earlier. No reference to this work by
Osipov is given.

Searches for the work proved fruitless, given the paucity of real information.
For a while, | ascribed Osipov to be another piece of Russian hype, claiming the
development of Lanchester’s equations just as they had similarly claimed to have
invented everything from the Franklin stove to the fundamental theorem of the
calculus. Subsequently this ascription proved to be false. The Library of Congress
yielded up to Dr. Allan Rehm five articles by one M. Osipov? all published during
1915. Subsequently, Dr. Rehm advised me that two separate translations had been
made, one by Dr. Helmbold and another by Deborah Couiter-Harris®> of the Soviet
Army Studies Office at Ft. Leavenworth. He was kind enough to provide me with a
copy of the latter. The remainder of this section is based on that translation. (Where
there are "direct"” quotes, they should be taken in the context of the translation.
Subsequently, Drs. Helmbold and Rehm have made their own translation.?)

It is clear from Osipov’s articles that he developed his theory of combat
independently of Lanchester and Fiske. Not only are the tone and texture of the
material different, but there is significant new material and philosophy. Further,
despite his protestations that he is (was) neither a specialist in military history nor
skilled in the practice of military matters, he is, manifestly by his knowledge and
arguments, a student of both. He also has a knowledge of mathematics and
statistics, although it also seems unlikely that he is either a professional mathemati-
cian or statistician. His ability to communicate in writing is evident, even in English
translation, yet his antipathy to the press would seem to indicate that he is not a
journalist. If we proceed with this fanciful analysis, we would be led to speculate that
M. Osipov is a teacher (this would explain his communication skills and his well
rounded, but apparently introductory knowledge of history and mathematics,) who
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served in the army during the Great War.

Osipov begins his article by considering history. He almost immediately
provides a list of 38 battles spanning the century from 1805 to 1905. This list
excludes battles between "regular troops and disorganized elements of uncivilized
countries” (colonial battles,) and "battles where one side has a fortress or strong
temporary fortifications." While he does not consider the duration of the battles, he
does list initial force strengths and losses (equivalent to final force strengths) for both
sides. These are organized by stronger force versus weaker force (initially) rather than
by victor-loser or attacker-defender. However, of the 38 battles, 28 were won by the
stronger side. These are shown in Table (ll.1).

Just as Lanchester introduced the Law of Concentration, Osipov introduces the
Law of Distribution of Losses (or just Law of Losses):
"Law of Distribution of Loses: The strongest side has less losses than
the weaker side.”
If we take (in our preceding notation) Red to be the stronger side and Blue to be the
weaker, then we may write this mathematically as

(I.c-1)
Ay - A< By - B.

We immediately see an apparent conflict between Lanchester and Osipov since the
Law of Distribution of Losses states that Lanchester’s Quadratic Law does not hold.
This however, is not the case if we consider the role of the attrition rate constant/-
function. If we compare this equation to Lanchester’s linear law state solution, we
find that the Law of Distribution of Losses gives us the requirement that

<1 (1.C-2)

L2
p

for the Linear law. For the Square law, a somewhat more complicated situation
exists. To investigate this, it is convenient to write the square law state solution in
the form,

B4 + A4, - A) = a (B, + B)(B, - B), (I.C-3)

which we may rewrite as

o (B, + B) (11.C-4)

(Ao - 4) = (Bo - B),

B4, + 4)

since the right hand side is, by the Law of Distribution of Losses, less than blue’s
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losses (B, - B), this equation reduces to

11.C-5
a(B, + B) < B4y + A), (1.C-5)

or
< (4, + A) (1n.C-6)
(Bo + B).

o

p
We may define the losses as a = (A, - A) and b = (B, -B), which allows us to rewrite
Equation (I1.C-6) as

o . (2A0 - a) (H.C-7)
B (230 - b)

Since A, > B, by postulate (and convention), and a < b by the Law of Distribution
of Losses, it immediately follows that

24, - a) > 2B, - b), (h.c-8)

so that the ratio a/8 is less than some number greater than one for Lanchester’s
square law. Thus, there is no conflict between Lanchester and Osipov on the basis
of the mathematical formulation of the Law of Concentration and the Law of
Distribution of Losses. It remains to be seen if this is supported by historical

evidence.

This historical evidence is one of the primary contributions of Osipov in his
articles. As we have stated, Osipov presents a table of 38 battles. The dates of
these battles span the century 1805-1905. Most are drawn from the Napoleonic era
(1805-1815) or during the thirty year period 1850-1870. (Crimean War, Second War
of Italian Independence, Austro-Prussian War, and Franco-Prussian War). (We shall
examine these data in greater detail in a later chapter devoted to historical insights.
Our comments in this chapter will be limited to a review of Osipov’s five articles).

Of these 38 battles, Osipov notes that 28 were victorious for the force with the
greater numbers. (We note that Osipov rounds all of his numbers, usually to
thousands. This gives rise to some calculations which appear more definite in their
significance than if rounding had not been performed. This is especially true in the
statistical inferences that Osipov draws). From a companion of losses in these
battles, Osipov concludes that, in general, the stronger side takes fewer losses than
the weaker side in a battle. He quickly notes, however, that there are many other
factors which influence the outcome of the battles. What is significant in that in the
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consideration of the battles as an aggregate data set, the effects of these factors are
decreased and the effects of pure numbers may be seen. (This is one of Osipov’s
significant new contributions. By aggregating these battle data, he in essence takes
a scientific approach to the problem, asserting that factors other than pure numeric
strengths may be treated as random error sources (relative to the calculation at hand),
which cancel out in the mean).

Osipov next describes a "simplest method of calculating losses” which is to all
intents and purposes is Lanchester’s Quadratic Attrition differential equation. He
writes the state solution as

(11.C-9)
A? - AZ = B? - B, 2,
where: A= A,-a
B’ = B, - b.
He further advances the approximation
(n.c-10)

Ay a = By b,

based on examination of his table of historical data. (In Lanchestrian terms, Osipov
is stating that history indicates that most battles stop far from a conclusion. We will
examine this in more detail in a later chapter).

Next, using a calculus argument, and introducing an attrition rate (identical for
both sides), Osipov derives the analytic Quadratic Law solutions as a function of time.
Tables of the cosh and sinh functions are presented since they would not normally (?)
be available to the reader, and example calculations are presented. Osipov then
notes that the time solutions are "not appropriate for application to military history,
because a (attrition rate) and t (time) are unknown". This statement recognizes two
fundamental problems in the analysis of historical data:

. how to get battle duration data, (a very difficult undertaking), and

» how to use it why you have it, since combat is not continuous.

(Again, we shall treat this in more detail in the chapter on historical insight). In the
process of developing further examples, Osipov presents the Quadratic Law solutions
for distinct (i.e. different) attrition rates, but claims that the derivation is so similar to
the previous one that he will not take the space to belabor it. He does, however,
present the "modified state solution, Equation (Il.B-3).

Osipov next introduces consideration of a force comprised of two different
weapon systems (rifles and some other weapon such as machine guns or direct fire
artillery). With the assumption that the second type of weapon takes no casualties
(is not atritted) he writes the Quadratic solutions as
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_ BN, | si
(A + -EMO) = (Ao + -EMO) cosh(a?) - (Bo + -;No) sinh(a?) (.C-11) .

(B + -"-No) - (BO R ENO) cosh(a?) - (Ao + P-Mo) sinh(a: 1),
o o o

where: B is the attrition rate for the second type of weapon (e.g. machine guns)
a is the attrition rate for the first type of weapon (rifles)
A,, B, are the initial number of rifle bearing troops (assumed one to one)

for each side respectively, and,
M,, N, are the initial (constant) number of weapons of the second type.

The state solution is

(A + ":iMo)2 - (Ao + 'B'Mo)z "'(B + —ENQ)Z - (Bo + _ENO)Z. .c-12)
.« « o o

Note that Osipov states that this formalism is valid only if the number of second type
of weapons is not atritted.

Osipov goes on to state that this technique of normalizing the attrition of
additional weapons may be extended to third, fourth, etc. types of weapon systems
so long as they are not atritted. He also expands the state solution for small losses .
as

(42 - 42 - B2 - B®) ~ 2B (am, - B - 0. (1.C-13)
o

He then proceeds to calculate the ratio f/a, the relative attrition of artillery (in this
case) to rifles and finds it is a number ~ 123 -143, for these Napoleonic battles.

One of the concepts Osipov introduces is the "correlation of losses”. He
compares the actual losses to a calculation based on the other strength numbers.
While there is no basis for the association, it is still interesting to postulate th:* this
type of calculation maybe the genesis of the "Correlation of Forces™ practiced in the
Russian armed forces today. Certainly, a logical connection can be made between the
types and forms of the calculations.

Osipov introduces the differential equation

JAdA = JBdB (I1.C-14)

based on his analysis of the historical data. This gives rise to the state solution
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(11.C-15)
A% _ oY - o2 - B3,

In the correlation of losses calculation, Osipov calculates the losses for the stronger
sides using the state solutions for the Quadratic Law (from Equations (Il.B-3) and
(11.C-10), respectfully) and the 3/2 law (Equation (II.C-15) above). The difference
between this calculated loss and the actual loss is treated as an error term and the
aggregate for the 38 battles is treated to an error analysis. (Osipov rounds to
thousands here, resulting in a tidier result than would be found otherwise. The
numbers in the Table li-2 are not rounded due to the way that the table was formed).
He finds average errors of 22% for the exact quadratic law state solution, 15% for
the approximate quadratic law state solution and 0.7% for the approximate 3/2 law
state solution. Further, the mean is essentially the median for the 3/2 law calculation.
He concludes that the 3/2 law most clearly describes this type of battle.

He further concludes that for small battles (< 75,000), the quadratic law may
be more relevant than the 3/2 law. For force strengths >75,000, the 3/2 law
appears to be more relevant. Osipov does note, however, that the rationale for the
3/2 law is purely empirical while the quadratic law is better founded theoretically.
(We shall examine the 3/2 law in greater detail in the chapter on Osipovian combat.
Since Osipov and Lanchester appear to have independently developed mathematic
attrition theories with many points in common, we shall adopt the following
nomenclature: The quadratic and linear attrition processes will continue to be referred
to as Lanchestrian rather than as the more cumbersome Lanchestrian - Osipovian,
attrition process other than quadratic and linear, will be termed Osipovian in
recognition of the greater generality of Osipov’s empirical consideration of attrition).

Osipov next proceeds to consider further the statistical aspects of his theory.
He examines error sources such as leadership, morale, reserves, artillery, weapons
quality on terrain and improvements, large number of fighting units, density of fighting
units and (considered to be systematic errors). He examines the concept that battles
terminate when one side has taken 20% losses.

Osipov concludes by stating that the dependance of losses on the numerical
strength of the forces exists but cannot be verified except on a statistical basis.
However, the stronger side has less losses than the weaker side. (Law of distribution
of losses). He does not present his theory as other than an example of the application
of existing military principles.

It seems likely that Osipov’s papers were not all that well received by the
Russian media when they were published. Certainly we do not know what happened
to Osipov following their publication. We do know that they have been used, in some
form, in the Military Operations Research community of the USSR.
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Stronger Weaker
Force Start Losses Force Start Losses
Austerlitz Allies 83 27 | French 75 12 | 1805
Jena French 74 4 | Prussians 43 12 | 1806
Auershtedt Prussians 48 8 | French 30 7 | 1806
Preisish French 80 25 | Russians 64 26 | 1807
Freiland French 85 12 | Russians 60 15 | 1807
Aspern Austrians 75 25 | French 70 35 1809
Wagram French 160 25 | Austrians 124 25 1809
Borodino French 130 35 | Russians 103 40 | 1812
Berezina Russians 75 6 | French 45 15 | 1812
Bautsen French 163 18 | Allies 96 12 | 1813
Ganau - “French 75 15 | Allies 50 9 | 1813
Drezden Allies 160 20 | French 125 15 | 1813
Keiptsig 1-Allies 300 50 | French 200 60 1813
Katsbach Allies 75 3 | French 65 | 12 | 1813
Liutsen French 157 15 | Aliies 92 12 | 1813
Dennevits French 70 9 | Allies 57 9 | 1813
Kul'm Allies 46 9 | French 35 10 | 1813
Laon Allies . 100 2 | French 45 6 | 1814
Kpaon French 30 18 | Russians 18 5 1814
Waterloo Allies 100 22 | French 72 32 | 1815
Lun’i French 120 11 | Prussians 85 11 1815
Grokhoro Russians 72 9 | Poles 56 12 | 1831
Al'ma Allies 62 3 | Russians 34 6 | 1854
Chernaia Allies 62 2 | Russians 56 8 | 1854
Inkerman Russian 90 12 | Allies 63 3 1854
Col’ferino Austrian 170 20 | French 150 18 | 18569
Madzhenta Austrians 58 10 | French 54 5 | 1859
Kustotsa Austrians 70 8 | Iltalians 51 8 | 1866

I - 15




Battle Stronger Weaker Date
Force Start Losses Force Start Losses |

Kenigrets Prussians 222 10 | Austrians 215 43 1866
Mets Germans 200 6 | French 173 20 | 1870

Gravelot Germans 220 20 | French 130 12 1870
Mars LaTour | French 125 16 | Germans 65 16 | 1870
Vert German 100 10 | French 45 5 | 1870
Sedan Germans 245 9 | French 124 17 | 1870
Aladzha Russians 60 2 | Turks 36 15 | 1877
Shabh Russians 212 40 | Japanese 157 20 1904
“Liaoian Russians 150 18 | Japanese 120 24 | 1904
Mukden Russians 300 59 | Japanese 280 70 1905
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Stronger Force Weaker Force Quadratic "Quadratic”
Start Losses Start Losses Errors

Austerlitz 83 27 75 12 -16 -17 -16
Jena 74 4 43 12 3 2 5
Auershtedt 48 8 30 7 -3 -4 -3
Preisish 80 25 64 26 -6 -5 -2
Freiland 856 12 60 15 -2 -2 0
Aspern 75 25 70 35 6 7 8
Wagram 160 25 124 25 -6 -6 -3
Borodino 130 35 103 40 -6 -4 0
Berezina 75 6 45 15 2 3 5
Bautsen 163 18 96 12 -11 -11 -9
Ganau 75 15 50 9 -9 -9 -8
Drezden 160 20 125 15 -8 -9 -7
Keiptsig 300 50 200 60 -13 -10 -2
Katsbach 75 3 65 12 8 7 8
Liutsen 157 15 92 12 -8 -8 -6
Dennevits 70 9 57 9 -1 -2 -1
Kul'm 46 9 35 10 -1 -2 -1
Laon 100 2 45 6 1 0 2
Kpaon 30 18 18 5 -15 -15 -15
Waterloo 100 22 72 32 -2 1 5
Lun'i 120 1 85 1 -3 -4 -2
Grokhoro 72 9 56 12 0 0 1
Al'ma 62 3 34 6 1 0 1
Chernaia 62 2 56 8 6 5

Inkerman 90 12 63 3 -9 -10 -10
Col'ferino 170 20 150 18 -4 -5 -4
Madzhenta 58 10 54 5 -5 -6 -6
Kustotsa 70 8 51 8 -2 -3 -2
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Battle Stronger  Force Weaker Force Quadratic "Quadratic” 3/2
Start Losses Start Losses Errors
Kenigrets 222 10 215 43 32 31 32
Mets 200 6 173 20 12 11 12
Gravelot 220 20 130 12 -13 -13 -11
Mars LaTour 125 16 65 16 -8 -8 -5
Vert 100 10 45 5 -7 -8 -7
Sedan 245 9 124 17 0 -1 3
Aladzha 60 2 36 15 6 7 9
Shabh 212 40 157 20 -25 -26 -23
Liaoian 150 18 120 24 1 1 3
Mukden 300 59 280 70 5 6 8
Quadratic "Quadratic” 3/2
20.0% 156.0% | 0.7%

Osipov’s Errors
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II.D. Fiske

Rear Admiral Bradley A. Fiske is regarded as a folk hero in the U.S. Navy. He
was one of the primary operators in the military, technical, and political process of
bringing the Navy into the Twentieth Century; of taking the technical advances of the
late Nineteenth Century that made the transition from steam-driven wooden vessels
to metal vessels possible. He was responsible for numerous naval inventions which
spread the capabilities of modern technology through everyday maratine tasks. He
was one of the architects of the operational innovations that integrated the new navy
from a collection of ships into a viable military force. Thirdly, he was progenitor of
the office of Chief of Naval Operations and the institutionalization of the General Staff
in the U.S. Navy.

In 1905, Fiske wrote his eighty page essay "American Naval Policy” which was
the Naval Institute (which he helped found, and of which he was later President,) prize
essay of that year. In that essay, he introduced the concepts that we now think of
as Lanchester’s Quadratic Law (State Solution) and the Law of Concentration. This
essay (until recently - see next section) gives rise to arguments that Fiske invented
Attrition Theory.

While Fiske was prolific as an author, most of his writings have not been widely
known outside of Naval circles. Of particular note, therefore, is the recent publication
of Fiske’s 1916/1918 The Navy as a Fighting Machine.! The 1916 edition met in
1917 enthusiastic review when published in England. From an European standpoint,
this clearly makes Fiske a contemporary of Lanchester and Osipov in advancing (in
print) the precepts of attrition theory.

In The Navy as a Fighting Machine, which incorporates an expansion of his
prize essay as well as other material, Fiske discusses the implications of the Quadratic
Law State Solution in a Naval context, much as Lanchester did with the Battle of
Trafalgar, but in greater detail. He does not, however, extend his discussion to
include any exact mathematical formalism of the state solution. (The 1918 edition
notes the existence of such a formalism - see the next section.)

While he does not formulate an attrition theory in mathematical terms, Fiske
does describe such a theory in words, and we can trans-late those words into
mathematics. In particular, ‘Fiske’s attrition equations’ take the form,

A(t+nAd) = A(+(n-1)A1) - « At B(t+(n-1)As), (1.D-1)
B(t+nAt) = B(t+(n-1)Az7) - p At A@z+(n-1)A9),

where we have adopted the force strength and attrition rate notation (i.e. A, B and
a, B) introduced earlier in describing Lanchester’s attrition theory, and n here indicates
the number of time periods of duration At which have transpired since battle began.
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(Fiskian attrition is discrete in time rather than continuous as he describes it.)

Before proceeding with this discussion, it is useful at this time to define the
finite difference operation. This is given by

(11.D-2)
AA(®) = A(t+ A7) - A().

We will develop the finite difference formalism of attrition theory in a more complete
manner in a later chapter.

By using the finite difference operator A, Equation (I1.D-2), we may rewrite
'Fiske’s attrition equations’ as

AA@+(r-1)AD) = -a At B(t+(n-1)Ad), (11.D-3)
AB(e+(n-1)A7) = -B Az A(t+(n-1)A0). |

We may ‘read’ these equations as: the change in the strength of a force (Fiske related
this primarily to number of ships, but makes it clear that he is distinguishing combat
power from mere numbers.) over a period of time At is negative (the force strength
decreases,) and is equal to a damage coefficient (attrition rate constant/function
multiplied by time period At - Lanchestrian terminology) times the strength of the
opposing force at the beginning of the period. The right hand side of Equations (11.D-
3) are the losses to the respective forces during the period.

(I have taken the liberty of introducing the damage coefficient to permit these
equation to be written as equalities rather than as proportionalities as Fiske’s
discussion would literally indicate. He does discuss the damage causing process of
combat and devotes considerable concern to the effectiveness of the units of the
forces to cause damage - thus apparently not allowing the two forces to have distinct
damage coefficients. For convenience of discussion, | have equated this damage
coefficient to the attrition rate constant/ function multiplied by the time period. This
allows the general form (for general t' = t + mAt) of Equations (Il.D-3) to be
rewritten (after a slight rearrangement,) as )

AA

_At_(t,l = -a B(t), (11.D-4)
A B(t) -

VI BA(t),

which, if we take the limit as At - O reduces to
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- -e B(t), (11.D-5)
_571_3 ) - _pa),

since the left hand side of Equations (I1.D-4) are, in the limit, just the definitions of the
derivatives. Thus, Fiske’s words are, in some approximate manner, mathematically
equivalent to Lanchester’s quadratic attrition differential equations, Equations (Il.B-1)
and (ll.B-2).)

In his discussion of attrition, Fiske clearly identifies the condition that the
‘damage coefficient’ (attrition rate constant/ function) must truly be a constant. From
a mathematical standpoint, this constraint of constancy represents an assumption for
his analysis. Fiske further rightly notes that, for his analysis, knowledge of the length
of the time period is unnecessary - rather, only the value of the ‘"damage coefficient’
(he uses a value of 0.1 in his examples,) is necessary. This is correct only if supple-
mented by one more constraint - the ‘damage coefficients’ of the two forces are
equal. Fiske explains this equality by citing the common armament (and thereby
common damage caused by a hit,) of ships of the two forces. This view is reasonably
well founded in terms of the historical development of warships in the period
considered by Fiske.

Fiske notes that the duration of combat to a conclusion (in Lanchestrian
terminology,) depends on the ratio of force strengths. He apparently arrived at this
observation empirically from his examples rather than from analytical analyses such
as would be possible from Osipov’s explicit time solutions.

Finally, Fiske states that "the difference in fighting forces cannot be measured
in units of material and personnel only, though they furnish the most accurate general
guide. Two other factors of great importance enter, the factors of skill and morale.”
In this regard, Fiske strikes the same note as Osipov.

Fiske also describes, in detail, what we know as the Principle of Concentration.
He also states that "every contest weakens the loser more that it does the winner".
This statement may be argued to be a corollary to Lanchester’s Principle of
Concentration and Osipov’s Law of Distribution of Losses if we take the stronger
force to be the likely winner {from an attrition sense.) In keeping with our previous
discussions, we shall refer to this statement as Fiske’s Principle of Winning.

While Fiske clearly has an earlier claim to the introduction of the concepts of

Quadratic Law attrition theory, the scope of his contribution to the formalism of the
theory is also clearly less than that of Lanchester and Osipov.
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Il.E. Chase

The fourth of our attrition theory pioneers is Jehu Valentine Chase. In a

footnote® in his 1918 edition The Navy as a Fighting Machine, Fiske® cites
(then) Lt. Chase’s 1902 Naval War College Paper "Sea Fights: A Mathematical
Investigation of the Effect of Superiority of Foree in". This brief mathematical paper
(]| 3 pages) was initially classified and was not declassified until 1972. Wayne
Hughes (CAPT., U.S. Navy Ret.), one of the editors of the 1988 republication of
Fiske’s book, includes this essay as an appendix? and decries the hiding of this work.
Surely, in light of the publication of Lanchester’s book, this continued safeguarding
of Fiske’s document for those 56 years must come under question.

Also included in the appendix is an extract from a 1921 letter written by (then)
CAPT. Chase (He eventually held the rank of Rear Admiral.) in which he discusses the
Quadratic Law/Principle of Concentration and the counteracting considerations of
survivability of the force in terms of how a Naval force is designed - many smaller
ships are more survivable than a few small ships. {The question of survivability in the
context of attrition theory is a subject which we will treat in a later chapter.)

In his original paper, Chase describes his own version of Quadratic Law
attrition. To do this, he first introduces the concept of "sudden” versus "continuous
gradual destruction™ (i.e. attrition). In modern terminology, continuous gradual
destruction is usually referred to as "graceful degradation™.® In brief, this concept
holds that the attrition of units (or more generally, reduction of system performance,)
occurs in an essentially continual manner. The concept of sudden destruction holds
that attrition is punctuated and total - a unit is either totally effective or totally
ineffective, and the change occurs over a short period of time (often treated as
instantaneous.) An example of this which is frequently offered is the attrition of tanks
by modern weapons. Until a tank is hit, its effectiveness is not usually considered to
be diminished; however, once the tank is hit, the probability of kill given a hit is
sufficiently great (in most cases,) that the tank is "killed". This occurs over a period
of time which is of the order of fractions of a second. (The consideration of the
transition from sudden to continuous gradual attrition is a subject of great importance
in the conjugate theory of attrition rate constants/functions.)

If a unit, on the other hand, is comprised of several tanks, then the unit is not
"killed" until all the tanks in the unit have been individually "killed”. Further, each
time that a tank is "killed”, the effectiveness of the unit is reduced by an amount
approximately equal to the fraction of the unit that the tank represents (for a ten tank
company. each "kill" reduces the effectiveness of the unit by 10% - this view

® |Isn’t it amazing that the most interesting information comes from footnotes? Both Osipov and
Chase were introduced that way.
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neglects any contribution to the unit’s effectiveness of morale or other psychological,
training, or tactical influences.) Nonetheless, this simple example illustrates the basic
idea of continuous gradual destruction. Such a concept is applicable to Naval
warships which have a large number of weapon systems and other assets such as
engines, ammunition stores, and command and control systems which contribute to
its total effectiveness and which effectiveness is only completely exhausted when
some sizable portion of the ship’s weapon systems and other assets are rendered
individually ineffective.

Chase acknowledges that sudden destruction does occur for ships (which he
was solely concerned with) due to ramming, running aground at speed, or torpedo
impact (for smaller ships,) but that for gunfire, attrition of the ship as a whole is
gradual. In other words, it takes several (many) gunfire hits to disable a ship. Since
these hits may be presumed to impact in a random manner, [We will consider the
statistics of this process in a later chapter on attrition processes.] the actually
punctuated but drawn out process can be approximated as a continuous process.

Chase defines the following quantities:

m,n are the number of ships on each side (that are engaged in combat
with each other,)

a,, a, are the units of "life” of each type of ship (each side is implicitly
assumed to have only one type of ship, but the two sides may each be comprised of
a different type of ship - this reflects the continued, at that time, theory of using the
Line of Battle and the fact that ships are usually produced in series with relatively little
difference among ships of the same series,)

b,.. b, are the units of "destruction” per time which each ship (of each

side) can produce,
D,.. D, are the damage received by each ship (at a given instant of time,)

and

y, z are the "destructive power" of each m, n ship at a given instant of
time.
[l have taken the liberty of changing the subscripts designating the two forces from
the numbers used by Chase to letters to reduce confusion.]

In addition, total damage is spread equally over all ships on a given side; ships
are tacitly assumed never to actually sink (this is a moot point and open to some
interpretation,) the units of "destruction” may be thought of as essentially the number
of ‘independent’ [We will define this distinction in a later chapter, however, repeated
hits on an already destroyed weapon system or asset cause little additional damage
and are thus not "independent” in reducing the effectiveness of the ship.] hits per
time, and the units of "life" as the number of hits that a ship may take :.efore it can
no longer fight (sink?) '

Chase provides the relational equations
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a,y =b, (a, - D,), (II.E-1)
zZ= bn (an - Dn)’

which state that the product of the number of "life" units and the instantaneous
"destructive power" of a ship are equal to the product of the "destructive” rate of that
ship and the difference between the "life" of the ship and the damage the ship has
received. In words, this equation is
finitial "life")(instantaneous "destructive power)
= ("destructive” rate)(instantaneous "life"” remaining)

If we note that the damage received D,,,, D,,, and the "destructive power" y, z, of each
ship are time dependent, we may use the definitions of the "destructive power",

D () = 1":- fotvz(t’) dt’,

D) =~ [oe)

(H.E-2)

to form pairs of "attrition” differential equations in D, D,, ory, z. (We will not treat
these differential equations explicitly here since they were not part of Chase’s
exposition, but delay their explicit solution for a later chapter.)

Chase then equates Equations (ll.E-1) and (ll.E-2) (appropriately,) and
differentiates with respect to time. This gives

dy n

am

- - -——— z,

by dt (I1.E-3)
Gdz_ _m,

b dt n’’

b4

which are Quadratic Law-type attrition differential equations. Time may -be removed
from these equations to yield the single differential equation,

by dy _ n® 2z (I1.E-4)

"ydy = L zdz. (Il.E-5)
m

Rather than integréte this in the usual definite form, Chase does the integration
indefinitely to yield
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2
a, b, y2 = L C, (11.E-6)
a b m2

which is the state solution for Chase attrition. The boundary conditions on Equation
(11.E-6) may be found by examining Equations (Il.E-1) and (ll.E-2), and noting that at
t = 0, D, and D, are zero, (assuming y and z are well defined and behaved in a
mathematical sense.) Thus, att = 0,y = b,, and z = b,. This gives a value for C

of '

C = b2 [a'" b _ ”—2] : (I.E-7)

If the battle continues to a conclusion (in a Lanchestrian sense - the concept is
independently introduced by Chase without comment,) then the "destructive power”
of one side becomes zero. Chase selects z = 0 at the conclusion; this gives a state

solution

: 2
n 2y y? = b2 | Sn e b _ 22| (Il.E-8)
all bm am bm mz

Chase then uses this equation to solve for the damage received by each ship of the
surviving force at the conclusion,

a
a, - |- (ma,b, - n*a,b,) (I1.E-9)

m \bm

m

Since the damage received by each ship of the destroyed force is just
D, =a, ' (11.E-10)

- by implication of the conclusion condition (total destruction!) the ratio of the total
damage to the surviving force to the total damage to the des:ayed force is

m - m- - n

mD a \ a b ("E-11)

m

nD, a, n

Chase also considers the case of a draw (where the two fleets are equally
matched.) This gives, from Equation (ll.E-9) (since y and z are both zero at
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conclusion,)

m2a b =n%a_ b, (11.E-12)

Finally, if the ships on both sides are equivalent (Chase’s term is "similar” - life
and damage rates are equal for the two forces,) the total damage ratio becomes

mDy _m - ym? - n? (I1.E-13)
nD, n
while the draw condition becomes
n=m.. (.E-14)

It is illuminating that Chase does not elaborate his mathematics with
explanation - apparently he felt such to be unnecessary. As such, he represents the
opposite extreme from the other three pioneers, especially Fiske.

1. Fiske, Bradley A., Rear Admiral, U.S. Navy, The Navy as a Fighting Machine, Naval Institute
Press, Annapolis, MD, 1988.

2. "Lieutenant J. V. C‘ha_séis Force-on-Force Effectiveness Model for Battle Lines", Appendix C
in Fiske.

*

3. Callahan, Leslie G., Jr., Ph.D., and COL (USA Ret.), "Modeling, Simulation and Gaming of
Warfare - Course Overview", Ninth Annual Course on Modeling, Simulation and Gaming of Warfare,
Georgia Institute of Technology, Atlanta, GA, August 1988.
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II.F. Conclusion

Of the three pioneers, Chase clearly has the claim for earliest advancement of
attrition theory. The classification of his paper, removing it from public consideration
compromises that claim, effectively reducing that claim to an academic footnote. Had
his paper not been hidden, the terseness of the development would have limited it to
a military audience with mathematical faculty and intellectual inquisitiveness adequate
to flesh out the theory - a markedly more limited community than that which could
read and debate the works of the other three pioneers. Albeit, an argument may be
raised that had the paper not been classified, Chase would have expanded his brief
paper into a more robust exposition of attrition theory. As fetching as this argument
may be, especially in terms of its effect on subsequent history, such considerations
are of the nature of science fiction, and the fact remains that Chase’s work was
buried from the light of scientific day.

Neglecting therefore, Chase’s claim to primacy, the question still remains of
which pioneer should be considered to be first? If we compare the works of the other
three, there is still Fiske’s 1905 prize essay which first introduced the Quadratic Law
concept but lacked an firm mathematical underpinning (nor did the 1916/1918 book
rectify this shortfall.) Next appears to be Lanchester with his 1914 article, followed
by Osipov with his series of articles in 1915. Both Lanchester and Osipov clearly laid
down firm mathematical bases for their theories. Both clearly built different
frameworks around their theories.

The question of primacy is moot and cloudy. Chase published first and had the
claim of primacy effectively denied him by government instrumentality. Fiske clearly
put'ished second but failed to provide a mathematical formalism. Lanchester and
Osipov published next, within manths of each other. Concurrency of their work
cannot be easily dismissed from what we know today. If we consider the impact of
the publications on the public, it is clear that Fiske and Lanchester (based on Chase’s
letter of 1S21,) were the better known. Chase was known only in cleared U.S. Navy
circles and Osipov was known only in Russia (?). Thus, we come full circle, finding
that the best claim to being ‘father’ of attrition theory seems to be Lanchester’s.

None of this discussion of primacy is rezlly meaningful. Who was first is not
really a measure of who (or what) is important to attrition theory. Regardless of who
we select as 'father’, and for traditional reasons, we will continue to use Lanchester
and the permutations and labels based on his name as the standard, what is really
important are the contributions of these pioneers to the theory of attrition. These
contributions are considerable, including the mathematical theories of Chase,
Lanchester, and Osipov, Lanchester’s Principle of Concentration, Osipov’s Law of
Distribution of Losses, Fiske’s Principle of Winning, and Chase’s Concept of
Continuous Gradual Destruction. These and other contributions, and developments
from these are the subject matter of the rest of this book.
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. MATHEMATICAL THEORY I:
Fundamental Solutions of the Lanchester Attrition Differential
Equations

.A. Introduction

In this section, we present a brief review of the mathematical methods used in
solving the Lanchester differential equations as they have been presented thus far.

As stated in the previous chapter, the general form of the Lanchester
differential equations is

YA a4,

- -BB"A. (1.A-1)
dt

dB
t

As part of this, we will be concerned with three palrs of differential equations which
give rise to: the linear law

dA - —aAB, (11.A-2)
dt

and
dt

the square (quadratic) law
dA - _aB, (l.A-4)
dt

and

HLLA-

dB _ _BA; ( 5)
dt

and the mixed law
dA - -aB, (11l.A-6)
dt

and
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dB _ _BAB. (.A-7)
dt

The first two sets of these differential equations, which give rise to the linear and
square laws, have an exchange symmetry of the form (a,B,) © (8,A,) which allow the
construction of the mathematical form of the second solution, B(t), from the
mathematical form of the first solution, A(t), by the use of this symmetry. The
differential equations giving rise to the mixed law do not possess such a symmetry
and the mathematical forms of the two solutions, A(t) and B(t), must be constructed

separately.

I1l.B. State Solutions

If the force strengths are assumed to be explicit functions of time, then each
pair of differential equations above may be combined into one equation by removing
time as a variable. This, in the linear law case, we may write

a4
a _dA dt
dB dt dB
- dr (n1.8B-1)
_dA . ~®AB _ aAdB
dB -BBA BAB
= ¢
p
This equation may be integrated directly as
A B
ll.B-2
ﬁfdA’ = ade’. ( )
49 By
which yields
(111.B-3)

BA - Ay) = «(B - By),

from which the origin of the term ’linear law’ may be clearly seen since this is the

equation of a straight line. Equation (Il.B-3) is known as the state solution for the
linear law.

Equation (lll.B-3) simply states that the strength of one force (say A) at any
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time t is linearly related to the strength of the other force at the same time. This
equation tells us very little (per se) of the time dependence of A or B, only about their
mutual and direct dependence on each other.

The ’'square law’ differential equations may be solved in the same manner for
the differential equations (lll.A-4) and (lll.A-5):

a4
d _dd dt
dB dt dB
ar (111.B-4)
_d4 _ -ceB
dB -pA
- uB
A’
This equation may be integrated directly as
A B
(1i1.B-5)
pfA'dA’= o [B' dB/,
4 By
which yields
(111.B-6)

B(42 - A3 = «(B? - By),

which is the ’‘square law’ state solution. (Normally, the factors of 2 in the
denominators are dropped since they occur on both sides of the equation.)

The ‘'mixed law’ differential equations may be solved in the same manner as the
previous two, by elimination of parametric time:

dA
da _dA dt
dB dt dB
dr (.B-7)
dB -BBA
= &
BA

This equation may be integrated directly as
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A B
111.B-8
pfA’ dA’ = ade’, ( )
49 By
which yields
(111.B-9)

—g—(A2 - AY = «(B - By,

which demonstrates the ‘mixed’ nature of the state solution of differential equations
(lll.A-6) and (lil.A-7).

Several mathematical insights may be drawn from the state solutions. One of
the most common of these is the development of so-called victory conditions. Ifitis
assumed that the two forces battle until only one force remains, and that complete
annihilation (battle to a conclusion in a Lanchestrian sense,) may be called victory,
then equations (ll1.B-3), (lll.B-6) and (1ll.B-9) may be rewritten in the forms:

(1.B-10)
aBo - ﬂAo = aB - pA,
(t.B-11)
«B2 - BAZ = «B? - PA?,
and
(111.B-12)

B, - %Aé -oB - P42

where all of the initial force strengths {’,” subscripted terms) have been moved onto
the left hand side of equations (lll.B-10) - (ll1.B-12). Since the two fc:ces battle until
only one retains any strength, then either A = 0, or B = 0, at the battle’s end. Thus,
in all three cases, the right hand side of these equations are either positive or negative
depending on whether B or A ‘wins’ {respectively.) That is, if B ‘wins’, the right hand
side of any of these three equations will be positive, while if A ‘wins’, the right hand
side of any of the equations will be negative by virtue of the minus sign. (Recall that
A and B are by definition nonnegative.)

Notice that since these are ‘equations’, the same conditions must apply to the
left hand side as to the right. We may thus write:
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<0 (A wins),
2 2 .
By - BAg > 0 (B wins)
<0 (A wins),
and
«B, BAO >0 (B wins)
<0 (A wins).
By rearrangement then, we can write
B
2% 5 4 (B wins)
B4y
<1 (A wins),
aBo

>1 (B wins)

® i
<1 (4 wins),

and

2a B,

BAo

> >1 (B wins)

<1 (4 wins),

(111.B-13)
(11.B-14)
(11.B-15)
(11.B-16)
(111.B-17)
(11.B-18)

If any of these three (equations (l11.B-16) - (I11.B-18)) are equalities, then the prediction

is for a draw or ‘tie’ {mutual annihilation?)

It may be noted that these ‘victory’ conditions are for a battle where one force
is completely destroyed. From an historical standpoint, such battles are relatively

rare. We shall examine conclusive battles in a later chapter.

Further, as we shall discuss later, even when one force is reduced completely,

the form of the relevant differential equations seem to be changed.
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I.C. Direct Methods of Solution

The state solutions are useful, but they convey imperfect information about the
actual time dependence of the force strengths. In this section, we shall address two
direct methods of solution of the square law differential equations, the method of
substitution and the method of Frobenius.

Before continuing, it is worthwhile noting that the Lanchester differential
equations are first order only. This means that only one boundary condition may be
imposed on each solution. As we shall see, this sometimes leads to some less than
satisfying conditions. It does have the satisfying result of assuring us that the
solution we arrive at is the unique solution.

i.c.1. Method of Substitution

The square law differential equations (Equations (lll.A-4) and (ill.A-5)) may be
solved directly by substitution. If we take one of the two differential equations and
differentiate it with respect to time, we get

fé _ —iq-B dB (1n.c-1)

de? dt d

We normally assume that the attrition coefficients are time independent,® so the first
term on the right hand side of Equation (l11.C-1) is zero. The second right hand side
term is just the other Lanchester differential equation of the pair. If we substitute
Equation (lll.A-5) into this equation, we get
2 -
d A _ —aBA, (11.C-2)
de?

“and if we define:
(H1.C-3)

we see that the resulting differential equation (of the second order)

2 We shall consider time (and range,) dependent attrition coefficients in later
chapters.
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(111.C-4)

has the solutions

AG) - Cet + Dev, (I11.C-5)

Since we will be applying initial conditions, (making A and B take on values of A, and
B, att = 0,) it is more useful to write the solution as

(111.C-6)
A(t) = C sinh(yt) + D cosh(yt)

and we can calculate the solution for B by either direct differentiation of Equation
(l11.C-6), or by symmetry. If we calculate it by differentiation, the solution may be
immediately seen as '

B(t) = -X D sinh(y?) - X C cosh(y?). (I1.C-7)
o o

(Note that even though we have a second order differential equation, the boundary
(in this case, initial) conditions imposed are the same as would be imposed for the pair
of first order differential equations. Thus, we are neither requiring nor introducing
any new information. That is, we require Equations (I11.C-6) (A(t)) and (lll.C-7) (the
derivative of A(t) or just B(t)) to have the proper behavior at t = 0.)

We now invoke the properties of the hyperbolic sine and cosine, namely that
sinh(0) = O, and
cosh(0) = 1,

to write:
I1i.C-8
4 - D, ( )
and
I11.C-9
B, - Y C, (ln.C-9)
o

which may be substituted back into Equations (l11.C-6) and (lll.C-7) to yield:
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(111.C-10)
A(z) = A, cosh(y?) - \J—% B, sinh(yt),

and

B (.c-11)
B(t) = B, cosh(y?) - J-;— A, sinh(y1),

from which the symmetry of exchange of (a, By) & (8, A) is obvious. These two
equations are the explicit time solutions of the Lanchester square law differential

equations.

The linear and mixed law differential equations cannot be solved by substitution
since they continually mix the two force strengths with repeated differentiation.
Thus, the method of substitution is of value only in solving the linear law differential
equations. '

Hi.C.2. Method of Frobenius

In the solution by the method of Frobenius, we assume that the time solutions
of the Lanchester differential equations may be represented as power series in time:

- m.c-12
Alt) = Y a,t", ( )
n=0

and similarly for B(t).

If we differentiate the series and substitute them into the square law differential
equations, Equations (lll.A-4) and (Ill.A-5), we get (after adjusting the indices on the
left,) '

E (n+1) a,,t"

n=0

(.c-13)

-o Z b, t",
n=0

and
{H.c-14)

i (ﬂ+1) bn+1 t" —ﬁ 2“: a, t".
n=0 n=0

If we now require that each term in the series be linearly independent, we may equate

terms with common powers of t. This gives,
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a _ __«

n+1 n+1 n?
and

b.=- B a.

n+1 n+1 n

By adjusting indices and substituting, this becomes

and similarly for the b,,.

From the initial conditions,

(11.C-15)

(n.c-16)

(11.C-17)

(1M.C-18)

ao = Ao,
b, = By,
and
81 = -a Bo,
b, = -8 A,.
We notice |mmed|ately that the result is an alternating series in odd and even powers
of t. That is: -
y2
a, = )
2 (2)(1) Ao
a, = - ,
? (3)(2) %
a. = ___Y_____
4 4o,
@@ @(1)
¥4
as = -0 —— Bo,
G)@E)(2)
or

,Yn
a, = -~ Ay, (n even)
n!

n1

i -9

= Bo, (n odd)

= \I_g n'Bo, (n odd)

(l.C-19)




and upon substitution back into the series, this yields

Ar) =4, Y TE - J_-"‘- B, ¥ L&
0 nz% nl B0 nzo nl (111.C-20)
n even n odd

= A, cosh(y?) - \J—% B, sinh(yt),

which is the same as Equation (lll.C-11).

Unfortunately, the method of Frobenius is also not useful for solving the linear
and mixed equations because the differential equations are not linear. To solve these
differential equations, we must turn to some other, more general method to find
solutions to the other Lanchester differential equations.

i.p. Normal Forms

The method that permits general solution of the Lanchester differential
equations presented thus far is the normal forms method. It is so called because the
state solutions of the differential equations must be developed first.

Before proceeding, we note that for the square and linear laws, an exchange
symmetry (a,B,) & (B,A,) exists. Because of this symmetry, we shall not have to
explicitly derive solutions for both of the differential equations of these pairs. This
symmetry, sadly, is not the case for the mixed law, and solutions for both of these
differential equations will have to be developed.

H.D.1 Linear Lanchester Equations

To demonstrate the normal forms method of solution, we begin with one of the
linear law differential equations (Equations (lll.A-2) and (lll.A-3)) and write the direct

integration solution as

} dA'  _ _]dt, (111.D-1)
I pl ’
,*A' B o

and we rewrite Equation (l11.B-3), the state solution as

, / (1.D-2)
aB = BA - ﬂAo + aBo,

and substitute the state solution directly into the denominator of the left hand side of
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Equation (l11.D-1) to yield

I da’ e (11.D-3)
AfopA’— BAy + @By Jar.

fo

the right hand side integral of this equation can be performed directly as an
elementary integral; the left hand side integral may be taken from Appendix A ,
integral (A-1) with parameters: -

a=§8

b = BA, - aB, = A, (a 'victory’ condition (conclusion) statement).

The resulting integrations have the form

A .D-4
_2 o284 _q) Y - -y, (111.D-4)
A, A, Ao

where : At =t - t,.

Substitution of the limits on the right hand side and rearrangement yield

coth™ 2BA® _ 4| - coth™ 2P4, _ 1| + -A—‘At, (Ili.D-5)
A, A, 2

We may now make use of the identity ‘

coth'(x) = |n("+1 (H-b-6)
2 \x-1)
to write (after some rearrangement)
A2) = 4, 4 _ (1.D-7)
BA, - aBye ™

The solution for B(t) can be formed from Equation (lll.D-7) by using the symmetry
properties; that is, by swapping a and 8, and A, and B,.

111.D.2 Square Lanchester Equations

The square law differential equations may be solved in the same manner. We
may rewrite Equation (l11.B-6) as
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(111.D-8)

B = JEA’* + B2 - Ba2
o o

and substitute it into a direct integration solution of Equation (lll.A-4). This yields

A(D) dA’ t
f = —afdt’. (1.D-9)

The left hand side integral is again found in Appendix A, integral (A-2) with
parameters

_B
= (11.D-10)

b=B:- %Aé,

and define:

o, , (H.D-11)
A, = a By - BAj. o

Evaluation of the integrals yields

AQ) (11.D-12)
Esinh"(’——B—A’] | = -aAr,
(! Aa Ao
sinh™ I—B—A
in [ A, )

sinh(u - v) = sinh(x) cosh(v) - cosh(x) sinh(x),

which rearranges to

_ 5 (1.D-13)
= sinh™"! ™ Ag| -vAtx,
2

and use the identity
(1.D-14)

to get
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B
\j: 40 - \[: Ay Coshly 43 (111.D-15)

- oosh[sinh“[ B Ao]
A4

sinh-(x) = cosh™'({x2+1),

sinh(y A?),

and use the identity
(l.D-16)

and the state solution to reduce this to

o (1.D-17)
A(t) = A, cosh(y At) - E B, sinh(y Az).

identical to Equation (l1I.C-10), the time solution of the square law Lanchester
differential equations.

1.D.3 Mixed Lanchester Equations
The final exercise of the indirect method is the solution of the mixed law

Lanchester differential equations, Equations (lll.A-6) and (lll.A-7). To arrive at this
solution, we must rewrite the state solutions of the mixed law, Equation (lll.B-9) as,

B - —B—A’z . A”_, (111.D-18)
20 o
where:
.D-
A = aB, - £A§ (iN.D-19)
2
We substitute Equation (ll1.D-18) into the direct solution
A
[—— fdt' ~(I.D-20)
Ay BA/z m
2 o

This integral has two different forms depending on whether A, is greater or less than
zero. We shall treat the former case first. If we make use of integral (A-3) from
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Appendix A and apply the argument addition rule for tangents, we may write

2], ®

ml

Ay - | — tan(nt) i
A(f) = \ B A >0, (I1.D-21)
1 + A ‘2& Itan(nt)
where:
[ B1A,l (11.D-22)
n-= .

The A(t) solution when A, < 0, may be derived from Equation (lll.D-21) by

noting that when A, becomes negative, then n -» in, and that tan(int) = 7 tanh(nt).
Thus, we may write

2|,
Ay + ~— tanh(nt) _
A(?) = \ B A <0 (H1.D-23)

1+ A |2Ii tanhn:) .

The B(t) solution can be found by either performing the normal form integration of the
other attrition differential equation, or by substituting Equations (111.D-21) and
(11.D-23), respectively, back into the rewritten attrition differential equation,

B(z) - 1 i“l_ (1.D-24)
a dt

This allows us to write the two solutions, after some algebra, as

B(Y) = B, sec*(n1)

» A, >0,

1 + 4, 2|BA | tan(nt)]2

(111.D-25)

and
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n <0, (11.D-26)

llII.E. Force Ratio

One of the quantities which is of interest in attrition theory is the force ratio;
that is, the ratio of the two force strengths. If the force ratio is represented by p(t),
then it is defined by

o(f) = A(L) (111.E-1)
B(r)

Before calculating the derivative of this quantity to form its attrition differential
equation, we note in passing that, at most, the quadratic Lanchester differential
equations will possess a closed form solution for the force ratio, but not either the
linear or the mixed Lanchester differential equations. This sad situation is predicted
by the fact that the time dependent solutions of both of these sets of differential
equations contain their state solutions explicitly in the time dependent portions of the
solutions. Only the quadratic solutions do not contain the state solution in such a
way.

We may calculate the time derivative of the force ratio,
dpo _1d4 A dB (111.E-2)
d¢ Bd  pedt’
into which we may substitute Equations (lli.A-1) to yield,

dp 2-n - 2
— = -aA°" + BT A%,
dt P

(I1.E-3)

from which we may see that the right hand side reduces to a function of p only if n
= 2! Thus,

(Ill.E-4)

We may solve this exact differential equation using the same techniques that we used
for the mixed Lanchester differential equations, giving a solution
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po - Otanh(yt)
po tanh(y?)
)

(I11.E-5)

p(t) =
1 -

This result could, of course, have been derived directly from Equations (111.C-10) and
(11.C-11), although that method would not have been as theoretically useful. The
force ratios of the other two types of attrition, linear and mixed, can be formed by
direct ratioing; however, the resulting ratios cannot be mathematically manipulated to
remove the initial force strengths explicitly.

I1I.F. Summary of Solutions

This concludes the development of the basic solutions of the Lanchester
differential equations. We present here, for the use of those who do not choose to
follow the mathematics, or who may wish to use these as a reference, a summary of

Linear Equations

- A HI.F-1
A(r) = 4, . -AAr” SR ( )
BA, - aBye
-A I.F-2
B(t) = Bo L A At. ( )
aBo - BAOe 1
(IIl.F-3)

A-' = BAO = aBo

Quadratic Equations

A(?) = 4, cosh(yt) - & B, sinh(y?), (I1l.F-4)

B(t) = B, cosh(y?) - % 4, sinh(y?), (IL.F-5)

-16




po — Stanh(yr)
po tanh(y?r)
o

p(r) =
1 -

A, = aBf - BAg

- /aB

o) = 28

Mixed Equations

214,
= tan(n?)
\ B , A > 0’

. ' B )
1 + 4, 2IAmltan(nt)

B, sec?(nt)

Ao—

A(z) =

, 4, >0,

+ B
1 + A, 27A ] tan(nt)]z

B(z) =

m-17

(111.F-6)

(IL.F-7)

(I1.F-8)

(lIl.F-9)

(N.F-10)

(HL.F-11)

(l.F-12)



Ay + 2'?"" tanh(n?)

\ LA, <0.
1+ 4, ,Zli |tanh('qt)

B, sech®(nt)

A(t) =

,A <0’

2|4,

1+ A4, b tanh(n t)r

i -18
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(I.F-14)

(N.F-15)
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IV. ASSUMPTIONS AND SOLUTIONS

IV.A. Introduction

Any model can be expressed in informational symbology. In the case of
Lanchestrian (and Osepovian) attrition theory, the models are commonly expressed in
three parts:

® a typical statement of what the model describes,

® a pair (normally) of coupled differential equations (which imply a
solution), and
' ® a set of assumptions.
This chapter then is a general overview of the models that comprise basic
Lanchestrian attrition theory.

Although it may seem somewhat premature, much of the discussion in this
chapter centers on the elementary nature of the attrition rate constants/functions. In
Chapter V, we will initially introduce the Ironman Analyses which lay the groundwork
for the relationship between the attrition differential equations and the attrition rate
constants/functions. .This early discussion is, however, important in initiating the
understanding of the interdependence between the two parts of Lanchestrian attrition
mechanics: the theory of the attrition differential equations, and the conjugate theory
of the attrition rate constants/functions.



IV.B. Lanchester’s Linear Law.

The Linear Lanchester Law describes combat between two forces. The rate of the
attrition is given by the differential equations

44 _ _ 4B, (IV.B-1)
dt
4B _ _p4B. (IV.B-2)
dt

The state solution for these differential equations, derived in Chapter lll, is
a(B - By) = B(A - 4p), (1IvV.B-3)

the explicit time solutions of the differential equations are derived in that chapter as
well.

We note here that a multiplicative increase in attrition rate constant/function is
equivalent to a multiplicative increase in force strength. If, for example, blue has an
attrition rate twice that of red’s, then blue’s force strength need only be more than
half red’s to force victory (in the sense of a conclusion). If technology is used to this
end, then its influence is direct and more efficient (of the two cases, linear and

guadratic ).
IV.B.1. Linear Law Assumptions.
The assumptions associated with this law are (following Dolansky’ and Karr?):

1.) The two forces A (for amber or red) and B (for blue) are engaged in combat.

2.) The units of the two forces are within weapons range of all units of
the other side.

3.) The attrition rates are known and constant.

4a.) Each unit is aware of the general location of enemy units but is
unaware of the effect of fire.

Bba.) Fire is uniformly distributed over the area occupied by enemy units.

IV

1
N



6.a) The occupied area remains constant, units redisperse within the area

or
4b.) Each unit is aware of the specific location of enemy units and the
effect of fire is known, but enemy units are hard to attrit, or are few in
number (i.e. Hard to find.)

5b.) Fire from surviving units is uniformly distributed against enemy units.
We shall examine some of the implications of these assumptions.

Assumption (1) is perhaps the simplest and, at once, the most crucial. It seems
intuitive that the model will only apply if combat is actually occurring. What must be
noted is that combat is not a continuous process - it tends to be punctuated. Care
must be taken to apply the model only when combat actually occurs.

This naturally leads to the concept (example here Agincourt & from Men at
War?) that attrition must be time dependent. Further, it leads to the idea of time
scales of combat. As we shall examine in a later chapter, the accommodation of
attrition rates between theory and actuality (history) depends on the time scale that
we consider. If we are interested in the losses per day, many of the actual combat
processes become hidden. Historical data for combat losses seldom are available at
time scales below one day. At this time scale, the dynamics of target acquisition
become less important. Attrition rates are dominated by the ratio of enemy units
killed (per day) to friendly rounds fired.

From a mathematical standpoint, the Lanchester differential equations freely
admit introduction of a scaling fraction which is the time interval divided by the total
time in combat. Either the time or the attrition rates may be scaled with this factor.
If, for example, a unit is actively engaged in combat for an hour in a day, the only
attrition caused by that unit (and possible suffered by it as well - attrition does not
necessarily have to be symmetric in time,) occurs during that hour. This attrition
translates directly into an attrition rate (which has units of inverse time - per minute
or per hour), which is valid while the unit is engaged in combat. If the unit were
continuously engaged in combat during the entire day, then the total attrition of that
unit would be described by integration of the appropriate differential equation over the
whole day’s time. This, however, is not the case since (by premise) combat occurs
only during one hour of the day. The total attrition of enemy units by that unit occurs
only during that hour. To reconcile this limited attrition period with a total day of
warfare for this unit, we may introduce a scaling fact £ (which in this case has the
value 24 - the number of hours in a day). This factor may be viewed as multiplying
the time (which transforms combat time into elapsed time) or dividing the attrition rate
{(which transforms the in-combat attrition rate into an effective (daily) attrition rate).
As we shall see in a later chapter, this problem is largely alleviated by the introduction
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of attrition rates which are sensitive to the presence of enemy forces (such as range
and/or time dependent attrition rates,) if not the actual state of combat.

Dolansky includes in Assumption (1) that the units engaged are identical but
notes that this holds for only the simplest of Lanchester "type" models - he goes on .
to elaborate heterogeneous force Lanchester "type" models, which we discuss briefly

in Chapter ().

This restriction gives occasion to treat an interesting case which illustrates the
impact of military doctrine on attrition as well as the fundamental Lanchestrian
question of what constitutes a unit. Some years ago, the-doctrine of the Soviet
Army, supposedly as a result of poor tank gun accuracy was that a tank platoon (3
tanks at that time, in that type of unit) would engage a single target collectively. The
platoon leader would select a target. All three tanks would then take aim and fire
together at that target. The unit of Soviet tank forces at that time was thus a

platoon.

The tank forces of the NATO powers at that time, for the purpose of
comparison, acquired and fired as individuals. Firing doctrine for NATO did not
prescribe any type of deliberate mass firings (except perhaps accidentally or at
responsive command discretion). Thus, the unit of NATO tank forces could be
presumed to be an individual tank.

The consequences of these two doctrines in terms of attrition rates (and their
calculation) will be discussed in a later chapter. Still, this difference points up some
of the difficulty which arises in determining what actually comprises a unit in a
Lanchestrian sense. T

This difficulty is further demonstrated by Assumption (2), that each unit be
within weapon range of all units on the other side. If we consider the case of combat
in line with edged weapons (the Roman legions and their foes comes to mind as an
example), then the lethal range of a weapon (sword, and/or non-thrown spear) is 1-2
meters. [f the linear density of troops is ~ 1 per meter, then the Lanchestrian theory
would seem to apply at about the level of one soldier fighting with one soldier. (This
also make old Douglas Fairbanks movies seem to be correct in a Lanchestrian sense!)
The unit would thus be the individual soldier. Description of combat ala Lanchester
under these circumstances would seem then to be violated. A more reasonable
assumption (which appears to yield the same result) would be that there are always
targets within weapons range of all units. If we adopt this assumption, then as long
as Assumption (1) holds, the result is the desired one. In terms of our Roman
example, if the enemy line is maintained, then each Roman soldier in the Roman front
line (engaged in combat) has 2-3 targets in range (in the enemy front line.)

The interpretation that presents itself, however, is that some areal structuring
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of the attrition process is necessary. This is supported if we examine the frontage of
troops in combat as a function of time (Dupuy® - We examine this in a later chapter)
and compare this to weapon ranges. This interpretation is consistent with our revised
Assumption (2). :

The third assumption, that the attrition rates are known and constant is also
open to discussion. Dolansky states that the attrition rates are difficult to evaluate
(see the earlier discussion in this section of the difficulty of time scale adjustment).
In principle, attrition rate constants/functions are calculable using Bonder’s Equation
(Chapter Xll) although difficult to verify historically. Further, attrition rates for those
factors of greatest interest, new weapons (the result of either new technology or
human inventiveness), and new doctrine, inherently cannot be verified in terms of
history. (We invoke a tacit, invisible subassumption here that warfare experiments -

we do not include training and operational exercises with troops because of their
controlled nature - cannot be conducted for whatever moral,ethical, and/or budgetary
reasons.)

In spite of these difficulties, if we accept the applicability of Bonder’s theory
of attrition rates (that acceptance being an obvious, but defended premise of this
volume), then the assumption that the attrition rates are known is satisfied; the
assumption that the attrition rates are constant is much more difficult to accept or
defend. In general, weapons’ performance are range dependent. Further, there is
considerable reason to believe that attrition rates should be time dependent as well.
From a mathematical standpoint, constant attrition rates permit simple, straight
forward closed form solutions of the Lanchester differential equations. Beyond this,
however, assumption of constant attrition rates seems inconsistent with much of
what we know of combat. It seems, therefore that this assumption is necessary not
for the applicability of the Lanchester differential equations, but of the simple closed
form solutions.

Assumptions (4a), (5a) and (6a) are generally supportive of what we think of
as non line-of-sight weapon systems units - generally classical artillery (post American
War Between The States) - whose operation is dependent on target acquisition
information from other units and, because of a variety of position and time
uncertainties, have only general knowledge of the position of enemy units. This
uncertainty is mollified somewhat by the areal lethality of the weapon. These
assumptions tend to be associated with the Lanchester linear law and lead to its
identification with indirect fire weapons. The other pair of assumptions (4b) and (5b)
are supportive of line-of-sight weapon units under conditions where targets are hard
to attrit. This pair of assumptions is generally not associated with the linear law in
much of the literature, although classically, of course, Lanchester associated the linear
law with ancient combat, which was entirely line of sight attrition (except perhaps for
some siege weapons(?), which are a special case).
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The combination of assumptions (1) and (4b) seem to conflict with Lanchester’s
identification of the linear law with ancient combat. The law is assumed valid only
when units are engaged in combat, and for ancient personal weapons, this effectively
means that the units are in contact. It is then difficult to reconcile how the enemy
units could be hard to find. The answer, of course, is that the units are not, while in
contact, hard to find, but rather that because the forces are in contact, the rate of
engagement is dependent on the product of densities of the two forces. This
situation is directly comparable to a chemical reaction where the rate of the reaction
is dependent on the concentration (densities) of the two (in this case?) reactant
chemicals (forces). This analogy will be even more usefully applied in a later chapter
on attrition processes where we develop the model of attrition as a scattering process.
(It is interesting to note, using this analogy, that this type of chemical reaction
description is valid when the reactants are completely mixed, as in a solution. A
different form occurs when the reaction only occurs at (or in the region of) an
interface.) This, has significant impact on attrition theory interpretation if we pursue
the analogy. If this rate form is valid when the reactants are mixed, then the
implication is that the forces must be mixed as well. This occurs only in a melee
situation. Is then the norm of applying the Lanchester Linear Law to ancient combat
melee combat only? Are ordered forms of ancient combat, such as those practiced
in the phalanx and the legion, not described by such? This is indeed so as we shall
see when we look at alternate forms of attrition "laws" such as those of Osipov and
Helmbold. Among other things, we shall see there that the form of the attrition
differential equation depends on the structure of the forces engaged, and that as that
structure changes, so does the form of the differential equations.

We shall further see, in this chapter and in the chapter on the calculation of
direct fire attrition rates that the form of the attrition rate can be either linear law-like
or square law-like - a (not completely) general form is a combination which we shall
consider in detail in another later chapter. We note, however, that Lanchestrian
(Osipovian?) attrition theorists in the Soviet Union seem to sometimes perform both
linear and square law calculations and use the two calculations as a bounded envelope
about the "real" answers. Although we shall defer consideration of the linear law as
descriptive of direct fire/line-of-sight/ point attrition to a later section, we will consider
here the more normal association of the linear law as descriptive of indirect fire/ non
line-of-sight area attrition. We may see the form of the attrition differential equation
directly if in a somewhat simplified manner. Recalling Equation (IV.B-1), we may think
of the entire red (A) force as occupying some area L. The number of red units per
area is A/L. If each blue (B) fire kills all of the A force in a given area d about the
impact point of munition, then the number of A force that is killed per blue fire is

Ad (IV.B-4)
L
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If each blue unit fires m times in a given regular interval of time (e.g. rounds per
minute), and we ignore such factors as overlapping lethal areas, shots outside of the
occupied area L, and any question of target acquisition or weapon down time, then
the number of A force units that are killed per blue unit per time (tg ) is Ad m

Adm (IV.B-5)
L

Since the number of blue units is B, then the number of A force killed per time
is just

dTm A B, (IV.B-6)

which is the attrition differential equation where

o = dm (IV.B-7)

L

is the attrition rate. The minus sign, of course, arises because the total number of the
A force is decreasing. The resulting attrition differential equation is simply,

44 _ _ 4B, (IV.B-8)

dt

which is a linear law attrition differential equation.

This also leads us to an understanding of the meaning of the attrition rates a
and 8. We may see that a is the number of A force units killed (by B) per B unit per
time, per A unit. As we have seen in the simple development just above, it is not
really the total number of A force units which is important, but rather their (areal)
density. In fact, this leads to a sometimes stated assumption of indirect fire attrition
theory - that forces are continuously redistributed over time (during combat) to keep
a (changing) but constant areal density. Unfortunately, the presence of the red force
strength as a factor in the attrition differential equation sometimes leads to confusion
since the area of the forces dispersion is usually embedded in the attrition rate
constant/function. This confusion can be somewhat alleviated (especially if closed
form solutions are not being developed), by rewriting Equation (IV.B-1) as

dA /
daA _ _ B, (IV.B-9)
dt * Pa

where: Pa (areal) density of A
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A/L, and
a’ = revised attrition rate constant/function.

(A similar parallel set of machinations can be performed for the other half of the
combat attrition process that which occurs to B. For brevity we leave that as an
exercise to the reader). Equation (IV.B-9) is a quadratic law differential equation. In
keeping with the quadratic law (alternate) assumptions (specifically assumption (6b),)
if the ratio of force strength to area occupied (that is, Pa,) remains constant, a
quadratic law differential equation describes the attrition process.

If we do not neglect the target acquisition time, we must introduce a simple
search and acquisition model. We have already defined the area density of Red units
as pA (= A/LA.) Let us postulate a search process where each unit of the Blue force
searches an area lg at any given time, with a probability p,, of finding a red unit in lg
(if a unit is present; we shall consider the effect of false detections in a later chapter;)
and that the Blue unit searches areas of size |, at a rate v; (number of areas per time -
the area searched per time is just Iy vz.) The area per Red unit is just p,' = L,/A.
The time required for a Blue unit to have searched an area which contains a Red unit

is thus

LA
- ALy, | (IV.B-10)

(pAleB)'1.

Since there is a probability p,, of the Blue unit detecting the Red unit, the
probable number of areas that the Blue unit must search to find a Red unit is increased
by a factor p,,”. The search time then becomes

LA
gy = ———,
Algvep,, (IV.B-11)
= (PalaVsPu)

We have earlier defined the time to kill (tg,) as
ty = pdm. (1V.B-12)

The total time to attrit a Red unit, including search and acquisition time (using these
simple models,) is just
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toawris = g * Lo (IV.B-13)

and the attrition rate is

-1
© = pamries (IV.B-14)
(2 + t)7".

If the search time is much greater than the kill time (i.e. tg, > > tg,) then we
may ignore tg, in the above attrition rate, and the attrition rate has the (approximate)
form

o =p, v, P,. (IV.B-15)

Now if p, is constant, then the situation which we described earlier, namely that of
the quadratic law assumption (6b) being valid, and the resulting differential equation
has the form

44 _ B, (IV.B-16)

which is a quadratic law attrition differential equation. If, on the other hand, p, is not
constant, then square law assumption (6a) is valid, and the resulting differential
equation has the form

44 _ _ 4B, (IV.B-17)

which is a linear law attrition differential equation, and where:

ot = BVBPac (IV.B-18)
LA

We shall further consider the interrelationship of search and kill times in Chapter VI
which deals with combined law differential equations and assumptions.
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IV.B.2 Linear Law State Solution

Even though a is the attrition rate constant/function for the attrition of the A force,
in the state solution, it is associated with the B force. This association occurs
because a may also be interpreted with the effectiveness of the B force in attriting A.
Note that we may interpret aB as the number of A units killed per time per A unit.
The quantity A,, defined by

A, = aB, - BA,, (IV.B-19)
is the difference in kills per time between the two forces at the beginning of the
engagement. In terms of the Lanchestrian concept of combat to a conclusion, this
difference is the predictor of victory. If A, > O then the blue (B) force generates a

larger number of kills per time than does its foe, the red (A) force. In this case, if the
combat is carried to a conclusion, then the blue force will be the victor with

%w=&-%%, (IV.B-20)

units remaining.

(We shall discuss the historical perspective of combat to a conclusion in
Chapter XIiL.) ’

If A, < O, then the red (A) force generates more kills per time than does its foe,
the blue (B) force. Thus, at the end of such a conclusive combat, the red force will
be the victor with

%m=%—%%, (IV.B-21)

units remaining.

If A, = O, then the combat, if carried to a conclusion, results in a draw service
both forces generate the same number of kills per time.

To examine the mathematical properties of the linear law, it is convenient to
write the state solution, Equation (IV.B-3) in the form
p-B4. 2% (IV.B-22)
o o

Mathematically, this is the equation of a straight line. (We have arbitrarily
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chosen the red force strength (A) to serve as the independent variable while the blue
force strength (B) serves as the dependent variable. Although we do this because

(i) A comes before B in the alphabet, and

(i) we commonly associate blue with the friendly forces
(except in the old Confederacy) and red with the enemy
forces,

some convention needs to be established to provide a consistent basis for
comparison. The reader is free to adopt the other convention, if desired, as an
exercise). If we plot Equation (IV.B-23) in the normal manner with A = 0, B = O at

State Solution
Linear Lanchester Equation

:22 ]
140 /
120 =
100 =
80 S =

o888
i

FOo—B80—90—100

S+QI30=~( 00-0T OC~-0

Red Force Strength

the origin of the axes (As shown in Figure (IV.B-1)), then we may see that the
quantity B/a is the slope of the line.

=84 (IV.B-23)

All solutions of the attrition differential equations (IV.A.1) and (IV.A.2) for these
values of a and B (actually for this value of the ratio f/a ! in our convention) will lie
parallel to this line. This line represents the case of a draw, when A; = 0). This line
also divides the graph into two regions, an upper and a lower region. The upper
region contains those combats where the blue force is victorious (in the sense of
conclusion), where A, > 0. The lower region contains those combats where the red
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force is victorious, where A, < 0.

We may now examine combats in terms of the intercepts of the solutions with
the axis. In the upper region, the state solution line must intercept the B force
strength axis at zero A force strength. It does so at value A,/a. We see now another
interpretation of A,; it is the number of kills per time remaining to the victor at the end
of a conclusive combat; it "represents” the power or ability of the victorious force to
enter further combat. Further, divided by the appropriate attrition rate constant/
function, A, is the force strength of the victor at the conclusion of combat, (Note
that in our convention, a plus sign here indicates a Blue force victory; a minus sign
indicates a Red force victory). These cases are shown in Figures (IV.B-2) and (IV.B-3)
respectively. The values of a and £ are held constant (and equal). In Figure (IV.B-2),
the initial Blue force strength is increased by 50%. Note that this 50% is the entirety
of the Blue force remaining at the conclusion. (The graph is read in a right to left
manner. The battle begins at the upper right hand edge [above the draw line], and
proceeds down and to the left). In figure (IV.B-3), the initial Blue force strength is

50% less than in the draw case. Note that 50% of the Red force remains at
conclusion. This points up one way to win a victory (under conclusion condmons )
the side with the larger force (numbers) wins.

State Solution

B
! Linear Lanchester Equation
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Another way to win is to change the attrition rate constants/ functions. Recall ‘

the (simple) definition (model) of the attrition rate constants/functions.

_ %™ (IV.B-24)
LA
and
g = M (IV.B-25)
LB
where: d,, dg = lethal area of A, B force shot,

m,, mg = rate of fire of A, B unit, and

L., Ly = area occupied by A, B forces.
There are basically three ways to change the attrition rate model. We shall examine
each of these in turn holding the initial force strengths of both forces fixed at the
values in the draw case, and holding fixed the three parameters:

® |ethal area per fire,

® rate of fire per unit, and

® occupied area of the Red force.

The first way to change the attrition rate constants/functions is to change the
area occupied by the Blue force. This has no effect on the rate of attrition of the Red
force. Rather, it decreases the number of Blue units struck by each Red unit fire - it
decreases the rate of attrition of the Blue force. In other words, if we double the area

State Solution
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J Linear Lanchester Equation
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that the Blue force occupies, a becomes ¥z of its previous value. This case is plotted
in Figure (IV.B-4). This change is most likely doctrinal in nature, assuming the Blue
force’s infrastructure, such as Command, Control, and Communication, can support
the dispersal. Notice that dispersing the force this way may violate Assumption (2)
since all of the Blue force may no longer be in weapons range of all of the Red force.

State Solution

Linear Lanchester Equation
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The second and third ways to change the attrition rate constants/functions are
for Blue (in this case) to increase the lethal area of his munitions and/or to increase

State Solution
Linear Lanchester Equation
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his rate of fire. Lethal area can be increased achieved by adopting larger
weapons/munitions (which usually decreases the rate of fire), or by technological
improvement of the munition (such as better explosives). The rate of fire can be
increased by training the weapon crews better, or again by technological
improvements, such as by incorporating automatic loading. If we double either of
these parameters, B doubles over its draw case value while a stays the same. This
case is shown in Figure (IV.B-5). (Note: This is identical to Figure (IV.B-4).) If we
double both parameters, 8 quadruples over its draw case value while a stays the
same. This case is shown in Figure (IV.B-6).

State Solution

Linear Lanchester Equation

TQIJO0~»(p OO~0T OC-0

Red Force Strength

These investigations display the general characteristics of indirect fire combat
as described by Lanchester’s linear law:
' ® M:zximum force dispersion, consistent with weapon
effectiveness minimizes losses. (We note in passing that
this is also the case when direct fire attrition is described
by the linear law. It also applies to the use of weapons of
mass destruction - nuclear and chemical weapons).

® [ncreased weapons effectiveness decreases casualties.

® Economy of force is manifested in the use of minimum
force strength to effect the mission (casualties are linear).
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1V.B.3. Linear Law Time Solution

The time solution of the Lanchester linear attrition differential equation , derived in
Chapter Ill are

A,
A(r) = Ay e (IV.B-26)
pAo - aBoe— 1
and
A —A1At
B(r) = B, ! —, (IV.B-27) |
BAO - aBoe- 1 ‘
where:
A, = BAy-aB,. (IV.B-28)

We note immediately that we cannot obviously solve these equations for a draw case
- both equations (IV.B-26) and (IV.B-27) appear to be zero when A, = 0. (The
general case of draw solutions are considered in Chapter Vi.) They can however, be
solved for A; # 0. The draw case can be considered if we expand the exponential
terms in Equations (IV.B-26) and (IV.B-27) to first order in A,,

e:tA1At o 1 + A1At, (IV.B‘ZQ)

which we substitute into those two equations (after we rearrange equation (IV.B-27)
to have only one exponential term. This yields
A,

: (IV.B-30)
BA, - «By(1 - A At)

A(r) = A,

and
A,

, (IV.B-31)
6Ao(1 + A1At) = aBo

B(t) = B,

-which reduces, using the definition of A, to
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A(r) = —A"_—, (IV.B-32)
1 + aByAt

and

B(t) = B . (IV.B-33)
1 + BAyAt

To calculate particular solutions of these equations, we must first compute
values of @ and B, and assume some initial force strengths.. As examples we take,

A, = 100, and
B, = 200.
The attrition rates, in the simplest case of kill dominated attrition, are
_ %™ (IV.B-34)
LA
and
g = LM (IV.B-35)
LB
where: d, dg = lethal area of A, B force shot,

m,, mg = rate of fire of A, B unit, and
L., Lg = area occupied by A, B forces.

For A, to be zero, £ must be twice a. We take initially then,

LA = 100 km?,
dg = 1 km?, and
mg = 5 min™.

This gives @ = 5 x 102 min™'. If we take Ly = L,, m, = mg, and d, = 2 km?, then
B = 10" min"". This satisfies the draw case condition. A plot of equations (1V.B-32)
and (IV.B-33) for these parameters are given in Figure (IV.B-7).

Variations for doubled/halved force strengths and doubled occupation area, rate
of fire/lethal area are shown in subsequent figures. Since these examples deviate
from the draw case, the force strengths were calculated using Equations (IV.B-26) and
(IV.B-27). Note how the draw shifts to Blue/Red victory in a conclusion sense.
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\ ‘ Linear Law Time Solutions

Force Strength Draw Case

Figure IV.B-7

@

Linear Law Time Solutions
Force Strength Doubled Blue Force

Time

Figure 1V.B-8
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Linear Law Time Solutions
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. | Linear Law Time Solutions

Force Strength Doubled Red Rate of Fire or Lethal Area
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Figure IV.B-11

Linear Law Time Solutions.
F°fcze°gﬂ!n§th Doubled Red Rate of Fire and Lethal Area

® w]]

Figure IV.B-12
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IV.C. Lanchester’s Square Law

The square Lanchester law also describes combat between two forces. The rate of
attrition is given by the differential equations

44 _ 4B, (IV.C-1)
dt

and
4B _ g4, (IV.C-2)
dt

The state solution for these differential equation, derived in Chapter lll, is

o (B2 - BY) = B(42 - 47). (IV.C-3)

The explicit time solutions of these differential equations are derived in that chapter
as well.

In the square law case, as in the linear law case, an increase in attrition rate
constant/function is equivalent to a multiplication increase in force power. (Such an
increase in attrition rate constant/function increases force strength only as the square
root since force power (total force kills per time) is the attrition rate constant/function
times the square of the force strength rather than as the force strength directly in the
linear law). [f for example, Blue has an attrition rate constant/function twice Red’s,
then Blue’s force strength need only be slightly more than 70% of Red’s force
strength to force victory (again, in the sense of a conclusion). If technology is used
to this end, then its influence is still direct, but is less efficient (of the two cases)
since the attrition rate constant/function must quadruple for every factor of two that
the enemy force strength increases.

This is a direct statement of Lanchester’s Principle of Concentration.

IV.C.1. Square Law Assumptions

The assumptions associated with the square law are, again following Dolansky,
and Karr:

1.) The two forces A (for amber or red) and B (for blue) are engaged in
combat.

2.) The units of the two forces are within weapons range of all units of
the other side.
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3.) The attrition rates are known and constant.

4a.) Each friendly unit is aware of the specific location of enemy units
and the effect of fire is known.

Ha.) Fire is uniformly distributed over surviving enemy units.

6.a) Targets are either numerous or are acquired at a constant rate (i.e.
are easy to find.)

or
4b.) Each friendly unit is aware of the general location of enemy units
but the effect of fire is generally unknown.

5b.) Fire from surviving friendly units is uniformly distributed over the
area occupied by enemy units.

6b.) The area occupied by surviving units contracts to maintain a
constant density of units.

We notice immediately that the first three assumptions, (1)-(3), are the same
as those advanced for the linear law. The reader is referred to the previous section
for discussion of those assumptions. We shall concentrate here on the "new"
assumptions which apply to the square law.

Assumptions (4a), (5a) and (6a) are those commonly associated with the square
law as a model of line-of-sight weapon systems units - generally classical infantry and
cavalry/armor units, and artillery units firing directly. (Artillery units were
predominantly direct fire until after the period of the American Civil War/War of
Southern Independence circa 1861-1865 C.E.) These assumptions describe direct fire
combat when targets are easy to find and the attrition rate process is dominated
directly by the rate of fire/kill rather than by the target location/identification process.
(As described by assumptions (4b) and (5b) of the linear law). Assumptions (4a) -
(6a) are those which we have seen support indirect fire combat and the comments in
the previous section are still applicable, but are modified by assumption (6b). In this
case, the quantity '

o, = 2o (IV.C-4)
L,

(and its conjugate) are conserved through the combat. As a result, the area occupied
by each force L,, L; , are now time dependent, and have the form
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L, = p, 4, (IV.C-5)

so that the attrition rate has the form

o = AB

i | (IV.C-6)

and the square form of the Lanchester differential equations arise. The indirect fire
attrition rate constant/function for constant density of forces is related to that for
constant area occupied by forces (designated by and a, and a,, respectively) is

a, =a, L, (IV.C-7)

where L, here is the area occupied by the initial forces.

If we again consider the search and acquisition time in the attrition rates, the
search model previously described in section IV.B may be used. The search time is

again

t, = Ly
Bs AleBpAa (IV-C'S)
= (pAleApAa)-1'
The kill time is just
tBk = (rp)’1’ (IVC-Q)

where r is the rate of fire of the weapon, and p is the probability of kill per shot. The
total time to attrit a Red unit, including search and acquisition time (using these simple

models,) is just
(IV.C-10)

Ypanrie = tps + tpis

and the attrition rate is (again)

If the search time is much greater than the kill time (i.e. tz > > tg,) then we
may ignore tg, in the above attrition rate, and the attrition rate is again,
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-1
« = Tpouri 1 (IV.C-11)
(25 + tz)7".

o« =p,lg Vg Dy (IV.C-12)

Now if p, is constant, then quadratic law assumption (6b) is valid, and the resulting
differential equation has the form

44 _ _, B, (IV.C-13)
dt

which is a quadratic law attrition differential equation (regardless of the type of
attrition.) If, on the other hand, p, is not constant, then square law assumption (6a)
is valid, and the resulting differential equation is a linear law attrition differential
equation,

44 _ _4* 4 B, (IV.C-14)
dt

where:
ot = 398 P (IV.C-15)

L,

If the kill time is much greater than the search time (i.e. 15, < < tg,,) then we
may ignore tg, in the above attrition rate, and the attrition rate has the (approximate)
form

« =rp, (IV.C-16)

and the resulting attrition differential equation is quadratic.

The interrelationship of search and kill times will be further considered in
Chapter VII which deals with combined law differential equations and assumptions.

On a historical basis, one would expect the actuality of combat to 'see-saw’
between the linear and square law descriptions of indirect fire combat. Initially, units
would be distributed over an area and would remain so for some time. Then,
casualties having occurred in a non-uniform manner, the surviving units might be
redistributed (over a lesser area) to fill gaps but reverting to approximately their
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original density. During the period of redistribution, we might expect that the square
law form would hold. This view, of course, is somewhat simplistic (but no more so
than the model itself). It will also depend on whether combat is continued (and to
what intensity,) while the units are redistributed. Alternatively, the area occupied by
the forces will tend to remain somewhat constant even when casualties occur due to
the need to maintain a force presence in those areas. This is a subject that we shall
also take up in Chapter VII.

It is worth commenting that one of the assumptions in the Lanchester model
describing indirect fire units (or those affected by indi-rect fire) is that such units are
uniformly distributed. This is only approximately so. The individual weapon systems
may be approximately uniformly distributed over an area (or a line) with some degree
of concentration, but by their very nature, the portions of the force which are not
(usually) attriters, (i.e., command and supply units,) by their very nature are
concentrated and not so distributed. The model is too simplistic (at this level of
development and discussion) to consider these units or the effects of their attrition.
This concentration is why target location has become crucial for indirect fire systems -

the need to selectively engage these control and support units which are not
efficiently attrited under the normal assumptive conditions.
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IV.C.2. Square Law State Solution

To consider the square law as descriptive of direct fire / line-of-sight/point
attrition, we again perform a simple analysis. Consider that each Blue fire is directed
against one Red unit at a time (assuming a unit to be the simplest level of weapon -
system, such as a tank or an individual soldier. If the unit is larger - a squad or
platoon, say - then this condition still applies but the unit attrition is fractional. We
shall illustrate this later when we analyze the example of the Soviet tank platoon as
unit). Associated with each unit is a rate of fire (fires per time) of r, and a probability
of kill per shot of p,. If target location/identification time is small compared to time
to kill once the target is located (a situation dictated by assumptions (4b) and (5b}),
and the target unit is engaged until killed (and (!) ammunition supply is ignored), then
the time to kill a Red unit is just (r, p,)", and the attrition rate is just

€ =T, Py (IV.V-;|7)
which is yields a linear attrition differential equation.
If we again define the quantity A, as
A, = «B? - BAZ, (IV.V-18)
which is the kills per time difference between the two forces. As with A,, this is the
predictor of victory in the Lanchestrian sense of combat to a conclusion. As before,

if A, > O, then the blue force generates more kills per time than does its foe, and if
combat is carried to a conclusion, then the blue force will be the victor with

2 2 .V-19
By = BO”BAO (IV.V-19)
units remaining.

If A, < 0O, then the red force generates more kills per time than does the blue
force, and at the end of a conclusive combat, the red force will be the victor with

4, = |42 - 2p? (IV.V-20)
fnal 5o

units remaining.

If A, = O, then the combat, if carried to a conclusion, results in a draw since
both forces generate the same number of kills per time.
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It is again convenient to write the state solution in a form when the red force .
strength is the dependent variable and the blue force strength is the independent

variable,
B = ‘EAz , B2 (IV.V-21)
o o

If we plot this function for A, = 0, we get a graph of the same form as Figure
(IV.B-1), except that the slope is

‘ _[_3__ (IV.V-22)
o
This follows since
g-|B 4 (IV.V-23)
Ne ™’

when A, =0

Since equation (IV.C-21) is quadratic rather than linear, solutions for various .
combats will not lie parallel to this line (for the same ratio a/B), as they did in the
linear case. They will, however, lie either above or below this line, respectively,
whenever A, < 0,or A, > 0. As before, if A, > O, the solution will graph above
this line and Blue will be victorious (in a conclusive combat). If A, < O, the solution
will graph below the line and Red will be victorious.

We now examine, in the same manner as previously, combats in terms of the
intercepts of the solutions with the axis. In the upper region, the state solution curve
intercepts the B force strength axis at zero A force strength. It does so at value
V/(A,/a). The quantity A,/a again represents the number of kills per time remaining to
the victor at the end of a conclusive combat. The quantity V/(A,/a) is the force
strength of the victor at the conclusion of combat.

As before, we examine the effect of force strength on the outcome of the
battle. This is shown in Figures (IV.C-1) and (IV.C-2) for an increase and a decrease
in the initial Blue force strength of 50% over the draw case. Note that in the latter
case, a Red victory, the Red force strength at conclusion, the interaction of the state
solution curve with the A force strength axis, isV/(-A,/8). In the square law case, we
must worry about the sign of A, explicitly since the argument of the square root must
be positive. These curves show that one way for Blue to win is to have more units
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‘ than Red (for the same attrition rate constant/function).
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The other way for Blue to win is to change the attrition rate constant/function.
This cannot be done by increasing the area occupied as in the linear case; it can only
be done by increasing either the rate of fire or the lethality of the munitions (increasing
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the probability of kill). If we double either the probability of kill or the rate of fire, the
Blue attrition rate is doubled in value (com-pared to the draw case). The result of this
is shown in Figure (IV.C-3). If we double both, the Blue attrition rate is quadrupled
in value. This result is shown in Figure (IV.C-4). As in the square law case, the
attrition rate can be changed through either training or technology. Both rate of fire
and probability of kill can be increased by developing the skills of the loader (assuming
a manual loader,) or the skills of the gunner, respectively. Similarly, by incorporating
an automatic loader (increasing the rate of fire when the unit is kill limited,) or
improving the accuracy of the weapon and/or the lethality of the munition (increasing
probability of kill,) the attrition rate can be increased.

State Solutions
Square Lanchester Equation
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Figure IV.C-3
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. State Solutions
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IV.C.3. Square Law Time Solution

The square law time solutions, derived in Chapter Ill, are:

A(t) = A, cosh(yz) - & B, sinh(yz),

Ay . (1IV.C-24)
B(t) = B, cosh(yt) - 3 sinh(yt),
where:
A2 = aBg - BAg!
Y =vab, (IV.C-25)
= | &
p

It is not obvious that these equations are valid for the draw case. To show this, we
first rewrite A, in the form,

A, = (VaBy - VBAg) (VaBy + VBA,). (IV.C-26)
We see that the draw condition A, = O means that
-~ JaB, - B4, = 0, (IV.C-27)
or ,. |
JEBO = VB4, (IV.C-28)

(This is also the result that we would have gotten if we had solved Equation (IV.C-25)
directly.)

If we now consider the alternate solution forms in Appendix C:

2/BA(t) = (VBA, - VaBy)e'™ + (YBAy + VaBy)e v,  (IV.C-29)

and

2/aB(t) = (VaB, - VBAy)e™™ + (YaB, + VBAy)e v,  (IV.C-30)

and substitute Equation (IV.C-27) into these equations, we obtain,
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2/BA(t) = (VBA, + YeBy)e ™™, (IvV.C-31)
and

2/aB(t) = (VB + VBAy)e™™, (IvV.C-32)

And now substitute Equations (IV.C-28) into these two equations, and perform some
minor algebra, '

A(t) = Ay e ™™ (IV.C-33)
B(t) = By e, '

result. (We shall derive these equations from the attrition differential equations in
Chapter VLI.)

For an example of the draw case, we again take
A, = 100, and
B, = 200.
The ratio 8/a must be 4. From the simple model of attrition,

@ =TpPg (IV.C-34)
B = Ty Dy

we see that this may be satisfied if:

(i.) I'A = 4 fB

(ii.) | pa = 4 ps

(iii.) | ra =2rg, and py = 2 pg

(iv.) | ra = 2 x 15 and py = 2 pg/X
where x > 0. For the purpose of this example, we will take case (iii.) above, and use
rg = 3 min”, and
pg = 0.25.
This results in @ = 0.75 min™, 8 = 3.00 min", A, = 0.00, y = 1.50 min”, and § =
0.50. A plot of these particular solutions for the draw case, Equations (IV.C-33) are
given in Figure (IV.C-5). While the ultimate convergence of the two solutions ate
force strengths of zero is not shown in this figure (in the interest of keeping a
reasonable span on the chart,) that end is clearly indicated. As with the linear law
conclusion condition, the square law conclusion condition can be changed in two
ways, by changing the initial force strengths and by changing the attrition rate
constants/ functions. Each of these variations is depicted in subsequent figures.
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Square Law Time Solutions
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Figure IV.C-b

Figure (IV.C-6) depicts the result if the initial Blue force strength is doubled.
This changes to conclusion condition from its zero value for the draw case to a
positive value. The rapid attrition of the Red force and the decreased attrition of the
Blue force is clearly shown. Halving the initial Blue force strength has the opposite
effect, as shown in Figure (IV.C-7).

Square Law Time Solutions

Force Strength Douhled Blue Force Strength

Figure IV.C-6
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Changing the attrition rate has a less pronounced effect on the conclusion
condition than does changing the initial force strength since the conclusion condition
is linear in the attrition rates but quadratic (from whence the name) in the initial force
strength. If the Blue force’s rate of fire or probability of kill are doubled, the Blue
force attrition rate doubles. Comparison with the draw and doubled initial Blue force
strength cases, Figures (IV.C-5) and (IV.C-6), respectively, shows the intermediary
form of the solutions. Doubling both the rate of fire and the probability of kill of the
Blue force has the effect of quadrupling the Blue force attrition rate. In terms of the
conclusion condition, this is equivalent to doubling the initial Blue force strength. It
also has the effect of doubling the value of y, so that the attrition process occurs
twice as fast as in that of doubling the initial Blue force strength. Comparison with
Figure (IV.C-8), the doubled initial Blue force strength shows the same relative losses
in both cases: Blue looses 12% of its units in both cases while Red loses 100% of its
units, but the attrition process takes half as long in the quadrupled attrition rate case
due to the doubling of y. ' ‘
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1V.D. Lanchester’s Mixed Law

The mixed Lanchester law is not explicitly mentioned by Lanchester in Aircraft
in Warfare; rather, it is suggested by the existence of the linear and quadratic (square)
Lanchester laws and the assumptions advanced in the preceding sections. As is the
case with the linear and quadratic laws, the mixed law describes combat between two
forces. The rate of attrition is driven by the differential equations

a4 _ _, B, | (IV.D-1)
dt

which is identical to equation (IV.B.1), and

dB _ -B A B, (IV.D-2)
dt

which is identical to equation (IV.A.2). The state solution for these differential
equations, derived in Chapter lll, is

(B - By) = -g-(A2 - 43). (IV.D-3)

The explicit time solutions of these differential equations are also derived in Chapter
lll. They differ from the solutions for the linear and quadratic attrition differential
equations in that the form of the solution depends on the sign of the quantity

m

A = aBo - -g—Ag (IvV.D-4)

Actually the solutions can be cast into a single functional form if the parameter A, is
treated as a complex variable due to the equivalence of the functions tanh(z) and
tan(z) for complex argument z. We will not pursue that uniformity here as the
mathematics involved are beyond the scope of this book and the resulting functional
form does not directly contribute to the discussion of the mixed law.

As in the linear and square law cases, an increase in attrition rate
constant/function translates into an increase in force power. For the linear law force
(here the Blue force,) an increase in attrition rate constant/function is a direct
multiplier of force power while for the quadratic law force (here the Red force,) an
increase in attrition rate constant/function directly multiplies force power as the
square root of the attrition rate constant/function divided by two. (This factor of two
in the denominator must be carried through in the mixed law case because it does not
cancel as is the case with the linear law.) This means that if technology is used to
increase the attrition rate constant/function, it is more effectively applied to the Blue
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force than to the Red force. More exactly, if technology is used to increase Blue’s
attrition rate constant/function (alpha) by a factor of two, Red can maintain parity only
by increasing its attrition rate constant/function by a factor of four.

IV.D.1 Mixed Law Assumptions

The assumptions associated with the mixed law can be carried over directly u
from the assumptions associated with the linear and quadratic laws, described
previously in Sections IV.B.1 and IV.C.1. The linear law assumptions imply either
point attrition (usually direct fire) against targets which are difficult to find or area
attrition (usually indirect fire) against a target array whose density changes over time
so that the area covered by the target force remains constant. The square law
assumptions, on the other hand, imply either point attrition against a target array
whose members are easy to find or area attrition against a target array whose density
remains constant over time, the area covered by the target force changing over time
to keep this density constant. This cross association allows us to describe many
types of combat by the three combinations of attrition rate differential equations:
linear-linear, quadratic-quadratic, and linear-quadratic (or quadratic-linear.) This
association is summarized in Tables IV.D.1 and IV.D.2 which cross correlate the type
of fire (direct or area), force disposition (area or density constant), and the density
(high or low) to show the type combination of attrition rate differential equations.

In this case, the characteristics direct/area fire, area/density constant, high/low
density have been chosen to signify particular aspects of the Lanchester law
assumptions. The terminology direct fire is used to signify point attrition while area
fire signifies area attrition. Constant density signifies that the force in question
maintains a constant areal density of units, thus normally reducing its area of
coverage as the number of units decreases through attrition while constant area
signifies that the force occupies a constant area during the combat, but that its areal
density normally decreases during combat. High density indicates that the units of
the force are sufficiently concentrated that target acquisition is fast, while low density
signifies that target acquisition is slow, compared to target destruction. This
introduction of two different characteristics of unit areal density should, for now, be
considered as independent - a force may have a density which is kept constant but
which still may be either low or high. Similarly, a force may have a variable density
which at any given instant of time may be either high or low. We shall examine these
distinctions in density in greater detail in the later chapters of this work which deal
with attrition rate constants/functions. The student may also anticipate that we will
also deal with some other considerations such as transitions between constant and
variable density (constant area occupied,) and the gradations between high and low
density which here only serve as limits on whether target acquisition or target
destruction processes are dominant.
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Some further explanation is also necessary. The student will have noted that
the type of fire: area or direct, is the crucial factor on whether constant/variable or
high/low density are important in the type of combat being described by one of the
three models/laws. What may not have been as obvious is that the attrition
differential equation form (linear or quadratic,) for a given force is defined by the
density characteristics of that force and the fire type of the opposing force. As an
example, the differential equation describing the losses of the red force will be
quadratic if the blue force is using direct fire weapons and the red force has high
density. The differential equation would be linear if the blue fire were still direct but
the red force’s density were low.

Examination of this table reveals that inclusion of the mixed law permits the
modeling of combat between forces in a manner which the strict linear and quadratic

laws would not permit. Specifically, we see that the linear law would allow

consideration of the following forms of combat:

Table IV.D.1
Red Blue
Area Fire, Density Constant Area Fire, Density Constant
Direct Fire, Low Density Direct Fire, Low Density
Area Fire, Low Density Direct Fire, Density Constant

Direct Fire, Density Constant | Area Fire, Low Density

This short table illustrates the cross relationship between fire type for one force and
the density characteristics of the other force. The same table for the quadratic law
is:
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Table IV.D.2

Red Blue
Area Fire, Area Constant Area Fire, Area Constant
Direct Fire, High Density Direct Fire, High Density
Area Fire, High Density Direct Fire, Area Constant
Direct Fire, Area Constant Area Fire, High Density

It is readily obvious that out of 16 possible combinations of fire type and
density characteristics (4 per force,) that the original linear and quadratic Lanchester
laws will only admit to modeling 8 combinations. The rest of the possible
combinations fall under the mixed law. (Note that these 16 combinations are not
exhaustive - they merely cover the extremes permitted under the basic assumptions
associated with the Lanchester laws.)
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IV.D.2 Mixed Law State Solution

As in the previous cases, the quantity A, is a measure of the forces remaining
if the combat is carried to a conclusion. Unlike the A’s defined in the linear and
quadratic law cases, this A is not symmetric in the force strengths. Thus, a small
change in the red force strength (we have explicitly assumed that the red force is
linear-like while the blue force is quadratic-like - this can be reversed with only the
necessary symmetric swapping of force strengths and attrition rates,) will have a
much greater effect on the value of Am than will an equal change in the blue force
strength. While we might normally expect a to be much larger than g to correct for
this, we must note that the attrition rates are constants (or functions,) and therefore
only point values. Thus, in mixed combat, there is a great advantage to the linear-like
force in greater numbers if the combat were to be carried to a conclusion. This can
readily be seen in Figure (IV.D-1) where we plot blue force strength versus red force
strength for two value of Am which are equal in magnitude but opposite in sign. The
draw case, unlike the other two state solutions, is not a straight line, but ratheris a
parabola. This form is the direct result of the asymmetric nature of the state solution.
The curvature of the graph is readily apparent. However, just as the state solutions
for the linear and quadratic state solutions are symmetric about the draw case for
opposite values of (delta), so too are the solutions for the mixed law. This symmetry
is somewhat more difficult to see due to the curvature of the draw case. If the
student can imagine transforming the draw case state solution to a straight line, and
mentally repeat these operations on the two other state solutions in the figure, then
the symmetric arrangement can be visualized.
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Note that changes in the value of A, cause different values in the remaining
. force strength at conclusion. Of course, the draw case results in zero force strength
on both sides. Thus each side takes 100% losses. For a A, value of 15 however,
the red force takes 100% losses, while the blue force takes 25% losses. Alternately,
for a A,, value of -15, the blue force takes 100% losses, while the red force takes
about 35% losses. This asymmetry is the direct result of the values of the attrition
rates , and illustrates the effect only of changing the attrition rates, not the initial
force strengths.
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IV.D.3 Mixed Law Time Solution

The time solution of the Lanchester mixed attrition differential equation for red
force linear-like, and blue force quadratic-like, derived in Chapter lll, are

2|A
4, —\ |4, tan(n?)
A(?) = B A, >0
1 + A, '2& | tan(n1)
2
B(1) - B, sec(nz) A >0
1+ 4, 2|i ltan(qz)J2
and
2
Ag +\ |4 | tanh(n 1)
A(t) = - 3 , A, <0
1+4 h
0 2[A ] tanh(nz)
- 2
B() - B, sech(nt) A <0
1 + 4, 2|ﬁ | tanh(nt)Jz
where:
| BlA,]
TN 2

We note immediately that there are two forms of these solutions which depend
on the sign of A,,. We can directly reduce these solutions for the draw case if we
note that tanh(x) = tan(x) -» x and sec(x) = sech(x) - 1 as x = O (to first order in x).

This allows us to write
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Ag + 2]4] (n?)
AQr) = A LA <0

1+4, gli () (IV.D-8)
B(z) = B, LA <0

+ I B |
[1 Ay 2]Am[(nt)J2

From the definition of n, these equations may be rewritten as

A, - |A |t
M -l <0
+B obt - (IV.D-9)
B(t) = —2—, A, <0.
[1 +A0Bt]2

Since the draw case means that A = 0, we must rewrite Equation (IV.D-5a) or (IV.D-
6a) as

4

—_, (IV.D-10)
1 +A4,pt

A(t) =

while Equation (IV.D-5b) or (IV.D-6b) may be used without alteration since it does not
explicitly contain A,,.

The explicit time solutions for these two values of A, are shown in Figures
(IV.D-2) and (IV.DC-3) for the Red and Blue force strengths, respectively. As in the
previous figures presented in this chapter, the units of the time variable are chosen
arbitrarily. It may be seen that the positive Am solution reaches zero faster (Red force
- quadratic-like) than the negative (delta)m solution (Blue force - linear-like) does.

Another way to vary the value of Am is to alter the values of a and 8. The
changes of the solutions for variations of +50% in the value of 8 are shown in
Figures (IV.D-4) and (IV.D-5) for the Red and Blue force strengths, respectively.
These variations are executed relative to the case of A, = 15. As noted earlier, the
effect of the variation in B scales as a square root change in A,. Although it is
difficult to see, the effect of these variations on the time solutions are approximately
equal in relative magnitude for these effective small variations in the solutions.
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Variations in a of similar magnitude (+50%) are shown in Figures (IV.D-6) and
(IV.D-7) for the Red and Blue force strengths, respectively. Note the relatively greater
changes in the shapes of the solutions. This is the result of relatively greater changes
in the values of Am about the base case (15) value. The changes in the Blue force
strength solutions are actually less than those due to the variations in §; the changes
in the Red force strength solutions are decidedly pronounced.
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8 Mixed Law Time Solution

l'l Variation in Beta

e

F

(]

r

c

e

S 80

t

r 60

e 40

N2

"

h ® Time (ubiatrary units# s ¢

Figure IV.D-5

The other way to vary the solutions is to alter the value of the initial force
strengths. Variations in the value of the initial Red force strength (B,) of +50% are
shown in Figures (IV.D-8) and (IV.D-9). As expected, the Red force strength time
solutions are essentially parallel. Variations in the value of the initial Blue force
strength (A,) of £50% are shown in Figures (IV.D-10) and (IV.D-11). Again, the Blue
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Mixed Law Time Solutions
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force strength time solutions are essentially parallel. We see here effects much as
predicted from the form of the state solution. Increasing the initial strength of the Red
force prolongs the duration of the battle (if carried to a conclusion or a percentage
loss), while increasing the initial strength of the Blue force shortens the battle (under
the same conditions.) For the cases studied here (admittedly for positive A,,,) indicate
that increases in initial force strength tend to favor the linear-like force more than the
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square-like force while increases in the quadratic-like attrition rate (a) tend to favor the
‘ square-like force more than the linear-like force (8).

Figure IV.D-8
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IV.E Force Ratio

The time solution for the force ratio were derived in Chapter lll. As noted in that
chapter, the force ratio, defined by

o(t) = po - 6 tanh(y¢)

! (IV.E-1)
- -‘;—" tanh(y¢)

where y and é were defined in Section IV.C., can only be defined in closed form for
the quadratic Lanchester law. The force ratio can be calculated for the linear and
mixed Lanchester laws, but only from the explicit time solutions (or from one of the
pair of time solution equations and the state solution,) but the force ratio for these
laws cannot be explicitly defined only in terms of the initial force ratio and the attrition
rate constants. This can only be done for the quadratic Lanchester law.

The cases of initial force strength and attrition rate variations presented in
Section IV.C are reproduced in Figures (IV.E-1) and (IV.E-2), respectively. The draw
case clearly shows the constancy of the force ratio. This follows from the fact that
the initial force ratio for the draw case is exactly equal to 8. (The student can easily
confirm this for himself - we shall explicitly derive this result in the next chapter.)
Since changing the initial Blue force strength completely shifts the sign of A, to be
positive (doubling B,) or negative (halving B,,) the variation of the value of p on [0, )
is clearly indicated in Figure (IV.E-1), although we have truncated the halved Blue
solution shy of conclusion to avoid warping the figure excessively. The effect of
increasing the Blue attrition rate parameters (Rate Of Fire and Probability of Kill - using
the simple attrition model developed in Section IV.C,) shows the same behavior that
we had earlier noted in that section - namely that changes in the attrition rate have
an effect which scales as the square of changes in initial force strength.
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IV.F Final Note

In the next chapter, we will present the Ironman analyses which provide further
insight into the nature of the attrition rate constants/functions. This chapter builds
on the mathematical tools which were built in Chapter 1ll, and the analyses and
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assumptions laid down in this chapter.

In Chapter VI, we will derive several additional mathematics tools and equations
which are useful in the study of Lanchestrian attrition mechanics. These will include
formal derivations of the draw case attrition time solutions which have been sketched
in this chapter as ad hoc. The remainder of the expositions to be presented in that
chapter will largely deal with approximations necessary for consideration of more
complicated attrition differential equations than the pure Lanchestrian forms described
in this and the last chapter.
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V. THE IRONMAN ANALYSES

V.A. Introduction

This chapter is devoted to what | call the Ironman Analyses. At times, | have
used the term lronman Theorems because these analyses can be cast in the form of
theorems. However, with the time and cogitation taken in developing these analyses,
| find that they lack the rigor to honestly be called theorems and that terming them
analyses is more useful.

The Ironman Analyses are a tool for understanding the nature of the Lanchester
Equations and their accompanying attrition rates. As we shall see, the Lanchester
Equations and the attrition rates are a dualism. The one defines the other. The
analyses bring the interpretation that the Lanchester Differential Equations are actually
the definitions of the attrition rates.

The motivation for the Ironman Analyses arises from Bonder’s work. In his
thesis, he provides what is called here Bonder’s Equations,

- (V.A-1)

where a is the attrition rate and T is the expected time for one unit to kill another
(enemy) unit. Bonder presents this equation without adequate analytical
underpinnings. Despite its apparent and intuitive correctness, some additional basis
for this equation seemed to be needed. Thus, the Ironman Analyses.

Central to these analyses is the concept of the Ironman. In simplest terms, an
Ironman is a foe who cannot be destroyed or attrited. As such, a force comprised of
Ironmen cannot change with time. That force is a constant. The attrition rate acting
on it is zero. As a result, the pair of Lanchester Differential Equations effectively
reduces to one equation which has a simple solution. This solution provides a direct
definition of the attrition rate acting on the Ironman force’s foe.

The Ironman Analyses represent a special, restrictive case of the Lanchester
Differential Equations or, perhaps more generally, of the transport theory of warfare.
As a class, they are comparable to the gedanken or thought experiments of Quantum
Mechanics. They provide a similar function in providing insight into the processes of
attrition just as the thought experiments of Quantum Mechanics provide insight into
its workings.

We shall be concerned with two types of Ironman Analyses in this chapter:

deterministic and statistical. The deterministic analyses are straightforward from the
basic Lanchester Differential Equations. The statistical analyses are less
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straightforward, but yield greater insight into the interplay of possible statistical forces
with attrition. Further, they lay a groundwork for developing the statistical forms of
Lanchester’s Equations in a subsequent chapter.

V.B. Deterministic Linear Ironman

Since the lronman cannot be attrited, the Linear Lanchester Differential
Equations, Equations (lll.A-2) and (lil.A-3) reduce to

44 _ _4 4B,
dt - (V.B-1)
B(t) = Boa

B = 0!

if we take the B force to be comprised of Ironmen. For convenience, we shall restrict
the B force to have a strength of one. As a result, Equation (V.B-1) can be solved
directly as

A(z) = Ay e (V.B-2)

which we will also write in the form

«t= In(—é°— X (V.B-3)
A(?)

If we now take this equation for a particular characteristic time 7 to be the time to kill
one enemy unit, then

A
at=1In ° _|. (V.B-4)
AO - 1
This may be rewritten as
a1 = —In(1 - l), (V.B-5)
4,

which we may expand to first order since A, > 1 by assumption (using the
logarithmic expansion formula.) This gives,

o1 = A, (V.B-6)

or
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a = (1 4g)7". (V.B-7)

As an example, let us now consider a combat unit that requires some amount
of time t, to find the target and then fires on the target at intervals t,. Let us further
stipulate that every time the target takes fire, it loses a fraction f of its strength. The
strength of the force as a function of time may be written immediately as

Aty + nty) = (1 - F) Aq, (V.B-8)

after the force has been fired on n times. (For the sake of maintaining the discussion,
we shall not rigorously require that n be treated as an integer.)

If we now relax the requirement, for the moment, that n be an integer, we may
calculate a value for the (probably less than 1) number of fires necessary to kill on
target, n". Obviously

T = t1 + n‘ta, : (V'B_g)
and n” may be obtained from
(1 __f)n‘ AO =AO - 1’ S _ (V.B-10)
if we assume f < 1, as
n"fAy =1. (V.B-11)
Thus,
I
T =t o+ , (V.B-12)
fAy
and the attrition rate is just
«-—F (V.B-13)
A ft + 4

If we cannot make the assumption that f < 1, then equation (V.B-10) may be
rearranged, the logarithm taken, to yield,
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-l ¢

0
h In(1 __f) (VB-14)

o —""—'—1——, AO > 1,

4, In(1 - f)
which gives an attrition rate of
45" In(1 - £)
o =

tIn(l -f)+¢ 'n(1 -1 ) (V.B-15)

Ay

In(1 - 1) A > 1.
Agt,In(1 -f) -8 "°

Note that since In( 1 - f) < 1, the minus sign in front of the t, does not decrease the
denominator.

We shall examine the consequences of the linear attrition rate further in the
analysis of the statistical forms of the linear Lanchester Equations.

V.C. Deterministic ‘Quadratic Lanchester Equations .

Under the assumptions of the Ironman Analysis, the Quadratic Lanchester Differential
Equations develop in an identical manner as the linear equations. They become,

A

72 B,
V.C-1
B(t) = Bo: ( )
p =0.

For convenience, we again take the Ironman force to have a strength of one.
The solution to the differential equation is then

A(t) =4y - o t, (V.C-2)

and if we again adopt a characteristic time, the quadratic attrition rate takes the form



_ 4 - A(t) (V.C-3)
T

In this quadratic case, the meaning of the characteristic time seems ciear if we

interpret it as the time required to attrit the A force’s strength by one. That is

A(z) = 4, - 1. (V.C-4)

If we adopt a simple model of a combat unit that takes time t, to find the target and
thereafter fires at intervals t, with a (constant) single shot kill probability p, the
expected number of shots fired to kill the target is 1/p. The quadratic attrition rate
for this unit is '

(V.C-5)

V.D. Comment on the Combat Unit

The type of unit described above obeys what is known as a geometric
probability distribution.  This distribution describes a sequence of (presumably
identical) trials (shots) which may be infinite in number. The distribution states that
the probability of the event (in our case, a kill,) occurring on the n* trial is (1 - p)™* p
where p is the probability that the event will occur on the first (or any other) trial.

The form of the distribution can be directly seen if one considers that the
probability of the event not occurring (commonly called a failure) on the first trial is
(1 - p). The probability of the event occurring (commonly called a success) on the
second trial is the probability of the first trial being a failure [(1 - p)] times the
independent probability of the second event being a success [p]. The conditional (or
total) probability of the second event being a success is then (1 - p) p.

Similarly, the total probability of success on the third trial is the probability of
the first and second trials being failures [(1 - p}{(1 - p) = (1 - p)?] times the conditional
probability of success on the third trial [p] or (1 - p)3 p.

As a model of a combat unit, this is exceedingly simple. The model requires
that the probability of kill of the unit against its target be the same for each shot.
Despite its simplicity, however, this model is of increasing validity as weapon systems
improve. Thus, for modern weapon systems, this model may be valid, while for oider
weapon systems it may likely not be.




If p is the probability of kill per shot, and we designate the quantity (1 - p) by ’
the variable g, then the total probability of kill after N shots is

N .
P(N) = EqH p. (V.D-1)
i1

If we allow an infinite number of shots to be fired (or trials to be made,) the total
probability of kill is

P(=) =p Y4, (v.D-2)
i=1
which may be rewritten as
P=)=p ¥ d, (v.D-3)
i=0

by change‘_of index. This sum is exactly summable using,
_1 . Y xi, x| <1, (V.D-4)
1-x i3

which is called a geometric series. Note that in our case, q < 1 always. An
interesting corollary is the case where N shots are fired, that is

N-1
xi _ 1 - x"
i=0 1-x

(V.D-b)

From Equation (V.D-4), we may immediately see that Equation (V.D-3) sums to

P(w) =—2_ =P -1, (V.D-6)
1-q »p

so that the distribution is normalized.

We may calculate the time to kill the target (the expected time to kill) using this
distribution. Using »
T = t1 + i tz, (V-D_7)

where i is the number of shots fired, we may form the summation
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<t>

i}

pY.d N (t +ity)
i=1 (V.D-8)

t+t,p Y q (i +1),
i=0

where the factor t, comes through directly because it is deterministic, and <>
indicates an ensemble average (expected value.) (In practice, the performance of the
unit may have more than one probability distribution associated with it. For example,
finding the target and killing the target may be represented by two different probability
distributions. When more than one probability distribution is present, they are each
treated in much the same manner as above.) We may evaluate the summation by
noting that

i+1
dg =(i+1)q. (V.D-9)
dq
This gives
. dql+1 (V D-10)
<t =h s yp Y 2T -

If we assume the summation and derivative to be mutually independent, then we may
swap their order, and rewrite this as

d )
<t>=t +5,p > ¢
dqi%
d 1
=t + L ——
1 2qu1_q
1
=ttt p — V.D-11
1 2P(1 g { )
- 4
_t1+t2__
P2

n
o~

+

|

which is the result claimed in Equation (V.C-5).

Note that this model becomes invalid if the firer is allowed only a finite number
of shots (e.g. limited ammunition,) since either a rearm time must be introduced or a
probability of the target surviving. In the latter case, the expected value of the time
to kill becomes infinite.




Another distribution of interest is the Hypergeometric probability distribution.
This distribution deals with a finite population of items (say N) which are of two types
(say red and blue in color.) The quantity of interest described by this distribution is
the number of items of a given type (color) that are selected given some total number
of trials of selection.

For example, if there are n red items (and thereby N - n blue items) and M items
are selected ( M trials,) then the probability that m red items will be selected is

p(m) = ——-—-—-———(:' ;{v:;)

N ’
M
while the expectation value associated with this distribution is
<m> = "M (V.D-13)
N

Yet another useful distribution is the Poisson. This distribution is used to
describe the likelihood of a number of identical events occurring over a measurable
interval (of time or distance usually.) Specifically, the probability of one event
occurring over an interval dx is A dx. The probability of the event not occurring is (1 -
A dx). By this definition, two or more events may not occur in the same interval dx.
(On another note, we could say that the probability of n events occurring in interval
dx is A" dx". The probability of any events occurring is

P(n>0) = Y (A dx)", (V.D-14)
n=1

which we may immediately sum using the geometric series and some algebra as

P(n > 0) = 1—1‘_‘;371_. (V.D-15)
- X

The probability of no events occurring is one minus this quantity which we may
expand as

p(n > 0) =1 - A dx - A2 dx® - HOT. (V.D-16)

As an approximation then, we may see that we must take
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22 dx? < 1, (V.D-17)

to satisfactorily ignore multiple simultaneous events.)

Returning now to our exposition on the Poisson probability distribution, the
probability of n events occurring in the interval (0,x) is then

P (x) = .(% e M (V.D-18)
n

and the expected number of events in the interval is

<n>(x) = A x. (V.D-19)

To put this in context, if a combat unit fires every At seconds and has a
probability of kill p, then the expected number of kills over time is

<kills>(t) = EA—;’ (V.D-20)

since A = p/At, and the probability of n kills is just

_pt
lp t]" e At (V.D-21)
P kills = .

" At] nl

If we use our previous example from the geometric probability distribution, then
the expected number of kills in time <7> is one, and the expected number of kills
over an interval t is

<kills> = ——, | (V.D-22)

<>’

and the probability of n kills in time t is

Pnkills =

t Jre <*> (V.D-23)
<t>| al ’
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V.E. Statistical Linear Lanchester Equation

Let us consider the case where force A has an initial strength A, spread over
an area L and that force B fires every time interval At. Every fire has a effective area
d with a probability of kill p. (We obviously neglect some delivery accuracy here.)
After the first fire, A has taken loses

Aypd - Ay £ (f= pd ) (V.E-1)

which is a fractional loss f. If we designate the strength of the A force after n fires
as A,, then the strength after one fire is

A1 = Ao (1 _f)- (V.E‘Z)
Two possible extremes may be considered here for the mobility and reactiveness of
the A force: either force A can move rapidly enough to reposition itself (v,, At > vd)
where v, = movement rate of force A) or it cannot (v,, At < V/d.) In the first case,

the areal density of A, A /L is a constant over L. In the second case, the areal density
is not constant over L. We shall consider each of these cases in turn.

The first case, where repositioning of forces is accomplished, is the simpler of
the two cases. We may even extend the analysis to incorporate multiple firers in the
B force.

After n fires, the strength of the A force is either

A=Ay (1 - F)Pm, (V.E-3)

if no two firers in the B force fire at the same point at the same time, or
4, =4, (1 - Bf), (V.E-4)
if all of the firers in the B force fire at the same point at the same time.

Regardless of which extreme of B force firing doctrine we select, we require
that

f<1, (V.E-5)

and




Bf<1. (V.E-6)

Not only are the individual fires of B not very lethal, but the total salvo fires of B are
not very lethal. (Obviously this does not apply to weapons of mass destruction -
nuclear, chemical or biological weapons, and the assumption of low lethality for salvo
or volley fire is not necessarily valid.")

If we now relax the requirement that n be an integer (make the transition from
impulsive to continuous attrition,) and replace it with the variable t/At, then Equations
(V.E-3) and (V.E-4) may be rewritten as

B

A97) = 4, (1 - )™, (V.E-7)
and
A®) = 46 (1 - BFYS. VES
It is convenient to rewrite Equation (V.E-8) as
AQE) = 4 3", (V.E-9)
and since B f < 1, we may expand Equation (V.E-9) using
(1 +x) =x - .’523 R %3. (V.E-10)
and retain only the first order term, thus giving
-z (V.E-11)

A(t) = Age *'.

Note that the use of Equation (V.E-10) with Equation (V.E-7) and the condition that
f < 1, gives the same result. Thus, aslongas f < 1 and Bf < 1, the distribution of
force B’s fires is not important (to first order in f!)

If we now differentiate Equation (V.E-11) with respect to time, we get
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44 _ _f py, (V.E-12)
dt At

which is the Linear Lanchester Differential Equation with an attrition rate of

a =
Ar (V.E-13)

The attrition rate of the linear case is thus the ratio of the area of effect of the fire to
the total area covered by the A force (d/L) divided by the expected time to kill for a

fire (At/p). If we return to Equation (V.B-10), neglect t,, and expand the logarithm

with Equation (V.D-10) using the same restriction, we get

a = f—, (V.E-14)
I

which agrees with Equation (V.E-13).

When the fire is too rapid for the A force to relocate, a more complex
mathematical problem occurs. To facilitate our analysis, we shall restrict the B force
so that all fires are at different places at the same time, and that several fires are
repeated over time at the same aim point. We shall further assume that no difference
need be drawn between those of the A force which have been killed as the result of
a fire and those which have not, at least in terms of determining subsequent Kills.
That is, each subsequent fire ‘kills’ a fraction f of the A force in the area of effect (the
kill area,) but some of that fraction may already have been killed. As an illustration,
take f to be 1%. The first fire kills 1% of the A force in the kill area. The second fire
also kills 1% of the A force, but 1% of that 1% were already killed in the first fire.
Thus the total fraction killed after the second fire is 1.99%, not 2.00%.

One way of treating this reduction in the effective fraction killed is to note that
the successive fraction killed by each fire obeys a Hypergeometric probability
distribution.

To further permit the analysis, we shall divide the A force into two parts, that
initially not under fire and that initially under fire. If we define the part of the A force

under fire as



(V.E-15)

we may write the initial force as

Ao = Ao - Bo ao + Bo ao. (V-E'16)

After n fires, but before any of the B force move their aim points, A, has the form
All = AO - Bo ao + Bo all’ (V-E"17)

where a, is the part of a, remaining alive in the kill area of a fire. Let us further denote
by f, the fraction killed by the n™ fire. Thus

a, = a, Hu -f)- (V.E-18)

Equation (V.D-13) gives the expected number of live targets selected per fire if we
rewrite it as

fa_, <tfid (V.E-19)
G
where:
a,., = number of living targets out of a,,
a, = total number of targets in kill area,
f, a8 = number of targets killed.

This reduces to
£, =f- (V.E-20)

Thus there is no difference in the fractional kill when we do not allow relocation from
when we do. (Actually, if we applied this model to the case with relocation, the
fractional kill would change. This is left as an exercise. What is significant here is
that the same form of the kill rate can be found regardless of the limiting assumptions
on the form of the engagement. The area fire is the critical and dominant factor.)

One of the questions that arises is whether the use of the expected value of kill
for each fire is valid. To demonstrate that the assumption of independent firing is
adequate, we calculate the expected loss from two repeated fires. While each fire is
described by a Hypergeometric probability distribution, we may simplify the
mathematics by requiring that the effective area of the fire be small (equivalently, that
the expected loss per fire is small.) In this case, we may replace the Hypergeometric
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probability distribution with a binomial probability distribution. The probability of n
kills out of a population of N in the binomial probability distribution is

P(N:n) = (lr‘l’)pn &, (V.E-21)

where: p is the probability of a kill, and q = 1 - p. The loss from one fire is

N

<n> =Y (1;’) 2" " n, (V.E-22)
n=0

however, it is easier to calculate the nonkilled fraction as

(N
ng(n)pnqh W-n), (V.E-23)
A,. '

<N-n>

It is relatively straightforward to find that this summation is
A, =qgN=(1 -p)A4,. (V.E-24)

_ If we now calculate the nonkilled after two fires, we may write

N N N-n N- , ;
s X e E( ) P (N -n-n'),  (V.E25)
n= n'=0 --= - .

where the second summation is the expected value for the second fire which is
weighted by the probable nonkilled (not the expected value) of the first fire. We may

rewrite this as

(V.E-26)

]
)
[
4
1}
\K,:
i
~
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N
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V.F. Statistical Quadratic Lanchester Equation

The statistical quadratic case does not differ greatly from the deterministic
quadratic case for the analyses that we shall present here. In our first analysis, we
shall consider the B force to fire on a unit of the A force every At with a probability
of kill p. We shall take as doctrine that a firer will continue to fire at a target until it
is killed. If p is small, so that the likelihood of kill is small, the early (before many
targets are killed) form of A, but after n shots, is

n-1
A, =4, -BY (1-p)p. (V.F-1)
i=0

We may rewrite this as

n-1
A" = AO - Bp Eei ln(1 ’P), (V.F'Z)
i=0

and perform the summation

1 - enln(1 -p)

= - V.F-
An ‘AO Bp 1 -e'n(1 ~72) ’ ( 3)
which reduces to
A, =Ay - B[1 -0 -2)] (V.F-4)
Since p is small, we may use Equation (V.E-10) to approximate this as
A, =4, -B[1-em? ] (V.F-5)
and change from integer to temporal form as
_t
A,,=A0-B[1—e“]. (V.F-6]
We may now take the derivative of A(t), with respect to time, and get
Y4
dA _ _p g, u (V.F-7)

dt At

which has the form of the Quadratic Lanchester leferentlal Equation whent = 0, and
we may identify the attrition rate as
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the result for the deterministic case. Unfortunately, this analysis leads us to the
conclusion that the deterministic form of the Quadratic Lanchester Differential
Equation is wrong. To resolve this, we must reexamine the analysis in a different

light.

To resolve this incorrect form, we examine the process as being described by
a Poisson probability distribution. (This relaxes the engage to kill restriction.) The B
force fires B shots, each with individual probability of kill p, per time interval At. In
Poisson probability distribution terms then, the probability of kill increment may be
viewed in either of two ways: there is a probability of one kill of B p per time At, or
there is a probability of one kill of p per time At/B.

We may write the probability of n kills over time t as

BPt
Bpt\" ~"ar
(—fr) e (V.F-9)
P(1) = ,
n!
and the expected value of kills over time is
<n>(t) = BPY, (V.F-10)

At

The mathematical form of the force strength of A is

A(t) = 4, - B2, (V.F-11)
() = 4 At
which has the derivative,
dA _ _p p (V.F-12)
dt At

which is exactly Lanchester’s Quadratic Differential Equation.

We could equally well have represented this with a binomial probability
distribution. The probability of n kills in time At is



B -n -
p(n) = (n) p" qB , (V.F-13)
which has the expected value
<n> = B p. (V.F-14)
Thus,
A1 = Ao - B p.
A2 = A1 - Bp (V-F‘15)
= Ao - 2 Bp,

(we have previously demonstrated the independence here.)
A, =4, - nBp. (V.F-16)

This may be used to write the finite difference as

Ad _ _p p (V.F-17)
At At

which goes over to the time derivative directly since A(t) is jump discontinuous.

V.G. Mixed Law

Because the mixed Lanchester law describes combat between two forces whose
individual attrition differential equations are linear and quadratic (individually,) in form,
no separate Ironman Analysis is necessary doe to the inherent nature of relaxing
attrition of one of the two forces involved in the lronman Analysis. The analyses
presented for the linear and quadratic Lanchester laws thus also apply to the mixed
Lanchester Law.

V.H. Summary/Conclusions

These analyses are not presented as any rigorous proof of the validity of the
Lanchester differential equations. Rather, they are intended to advance the concept
that the Lanchester differential equations are definitions of the attrition rates rather
than the opposite. In a later chapter, we shall examine the idea of a transport theory
of combat. In that chapter, we shall consider the Lanchester differential equations
both as scattering terms and as ensemble averages.
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Before closing out the chapter, it is useful to consider the general from of the
Lanchester differential equations, Equations (lll.A-1). For our restrictions of B, = 1,
and B = 0O, these become a single differential equation,

44 _ _, 42, (V.H-1)
dt )
which we may rewrite as
-1
dAn = _a(n - 1). (V-H'z)

dt
This equation has the appearance of being invalid for n = 1, the Linear Law case.

If we solve Equation (V.H-2), we get

Ay -4y = —a t (n - 1). (V.H-3)

For our assignment of 7 to be the time to kill one enemy unit, this equation may be
rewritten as

@t (n-1)=45" - (4 - 1) ~ (V.H-4)

Since A, > 1 by assumption, we may rewrite and expand this equation,

- 1
n-1)=47"-4a"[1-—
, et ( ) 0 ) ( Ao)
« 4y -4 (1—"“1] (V.H-5)
Ay |
«(n-1) 45"
@t = A2,

which is valid even for n = 1. This relation is usefui since it gives us 2 scaling
equation in attrition rate constants across attrition order (n). For example, if we
designate the attrition rate for attrition order n by a,, and the attrition rate for the
Quadratic Law (for which Equation (V.H-5) reduces to Bonder’s Equation,) as a,, then
Equation (V.H-5) gives us '

o, = 0, 45" (V.H-6)

n



to scale attrition rates for other attrition orders from the (presumably known, or at
least, easily calculated,) Quadratic Law attrition rates. In fact, we may substitute
Equation (V.H-6) back into Equations (lll.A-1) to get differential equations of the form,

dA
dt

. : Because a, is commonly associated with direct fire, Equation (V.H-6) allows us

-a, A" B

~a, Ay 2 A*" B (V.H-7)
2-n
—a2 (A) B,
AO

which opens up a whole new arena of approximations. This will assume lmportance
a we address the Osipov problem and subsequently.

1. Helmbold, Robert L., "Volley Fire Models", Proceedings of the Workshop on Modeling and
Simulation of Land Combat, Leslie G. Callahan, Jr., ed., Calloway Gardens, GA, sponsored by the
Georgia Institute of Technology, Atlanta, GA, 28-31 March 1982, pp. 287-301.
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VI. MATHEMATICAL THEORY II:
Further Solutions of the
Lanchester Attrition Differential Equations

VI.A. Introduction

This chapter deals with a ‘pot pourri’ of mathematical topics associated with
the Lanchester attrition differential equations in their simplest forms as initially solved
in Chapter Illl. In some instances, these topics deal with the limiting cases of
previously considered problems while other topics deal with approximations, or
alternate views or approaches to the attrition differential equations which will have
relevance as we consider more elaborate forms of the attrition differential equations
than the pure forms hereto considered. This chapter thus serves as a mathematical
introduction to topics which we shall encounter in later chapters. As before, the
student who is not mathematically inclined has the option of accepting the derivations
at face value, and need merely note the results for future use.

The first two topics in this chapter are the near-draw and draw solutions of the
attrition differential equations. We recall the conclusion condition
A, = aBy - BAg, (VILA-1)
which in mathematical terms describes the state of the "winner" if combat is carried
to a conclusion. (If A, > O, then the Blue force is the "winner" while if A, < O, then
the Red force is the winner.) If A, = O exactly, and combat is carried to a conclusion,
then there is no "winner"; both sides are reduced to zero force strength. This is

referred to as a draw condition or situation, and the attrition differential equations
have special solutions.

The draw case solutions have, of course, already been sketched in Chapter IV,
but they were derived there by expanding the general exact time solutions. In this
. chapter, the draw case solutions are derived directly from the attrition differential
equations without recourse to expansions and limits as A, - O.

If A, is small, then a condition of near-draw occurs and there are special (but
not necessarily unique) approximate solutions to the attrition differential equations.

Another analytical (in the mathematical sense,) topic which we shall pursue is
that of inverse solutions. Normally, we solve the attrition differential equations for
explicit solutions of the force strengths as functions of time with initial force strengths
and the attrition rates as parameters. Inverse solutions are explicit solutions of the
attrition rates as functions of time with initial and final (or at least intermediary) force
strengths as parameters. These solutions are useful in the analysis of historical data.
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Next, we examine expressions of the attrition differential equations as attrition integral
equations. This examination lays the basis for introducing approximate numerical
techniques for the attrition differential equations

Finally, we deal with a combined attrition differential equation and the quadratic
law differential equations with reinforcements as introductions to a class of attrition
differential equations which either do not possess state solutions or if they do, the
state solutions are so complex as to limit their use in arriving at exact solutions of the
differential equations. An example of such are differential equations which possess
transcendental state solutions. Such differential equations cannot be solved using
the powerful method of normal forms described in Chapter Ill.
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VI.B. Near-Draw Solutions

The near-draw situation arises when the conclusion condition is small. In
mathematical terms,

gﬁ: > A,A (VI.B-1)
> -4,

which states that combat ends much before conclusion and normally refers to
situations where the two forces are approximately evenly matched. This
approximation may also be used to describe the early stages of combat before losses
are too great. The general use of these solutions is to gain insight from differential
equations which do not lend themselves to exact solutions. Note that the near-draw
problem does not really have anything magic to do with &n being small; rather, it has
to do with a short duration conflict in a mathematical sense.

If the near-draw situation holds, then we may usually take the normal form
expression of the state solution,

n (VI.B-2)

B = EA"-}-_A.E ,

o o

(or the equivalent expression in A as a function of B,) and expand it as follows:

a1 1
B - E'*,4[1 , L ]
a)1 BA™
) EJ;A[1 . } (V1.B-3)
4 npA®
1
o E\" A+__A”_],
o) npAa!

which effectively linearizes the normal form expression. We note immediately that for
the linear law attrition case, n = 1, this expression does not exist since the linear law
normal form expression is already linear. Thus, the linear law attrition differential
equations do not possess near-draw solutions of this form.

VI1.B.1 Near-Draw Linear Law Solutions

A near-draw approximate solution for the linear Lanchester law can be derived
by expanding the exact solutions. The process is essentially that used before in
Section IV.B.3 to derive the draw case solutions. In this instance, however, we use
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the expansion,
2
Ay e (V1.B-4)

e 1 Ayt +

and substitute it into the exact solutions, Equations {lll.C.2) and (IV.A.14),

Ay A
A(2) = 1
Bdo - aBye " (VI.B-5)
By, A,
B(t) = 0 -1 ,
BA, €' - aB,
to yield
A, A
A(t) = ?
A2
BAy - «By |1 - Ayt + — VLB
B(t) = By 41 "
2 3
ﬁAO 1 + A1t + 1 - aBo
These two equations may be rewritten as
A, A
A(z) = 2!
25
ASt
BA, - «B, + By |A,t - -—’-—]
5 A 2 (VI.B-7)
B(t) = 0 1 ,
2
Asr?
BA, - aB, + P4, kA1t + ; )

We now use the definition of A, = B A, - a B,, io further rewrite these equations as
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4y Ay

A(z) =
A%
5 2 (VI.B-8)
2.2
A3t
2
and cancel terms A, in both numerator and denominator to get
A
A(?) = 0
1 + aBo t = me—
2 (VI.B-9)
B,
B(t) = ’
A,22
1+ BAy |t + :

Note that if A, > O (Red "winner" at conclusion,) then the decrease in Red force
_ strength, Equation (VI.B-9a) is retarded since the denominator increases in a slower
fashion (due to the 'minus’ A, term, while the decrease in Blue force strength,
Equation (VI.b-9b) is accelerated since the denominator increases faster (due to the
‘plus’ A, term.) The exact opposite occurs when A; < 0.

The behavior of this approximation is demonstrated in the series of Figures
(VI.B-1) - (VL.B-5). Figures (V1.B-1) and (VI1.B-2) present both the exact and the
approximate near-draw time solutions for values of A, of +£0.05, respectively. For
this small value of A, little difference is evident in the two solutions. Figures (VI.B-3)
and (VI.B-4) present the same curves, but for A, values of 0.5, an increase of one
order of magnitude. Some error can be discerned in the curves at long time
(relatively). If, however, we double the value of A, to -1, as shown in Figure
(VI.A.1-5), we discern the instability of the approximation. This instability occurs in
the Blue force strength since A, is negative. The cause of this instability can be seen
by noting that the denominator of Equation (VI.B-9a) has a positive part equal to

1 + BAot, (VI.B-10)

and a negative part equal to
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2
B4 AT (VI.B-11) .

2
Since the magnitude of A, is one, the negative part may be written as

N (VI.B-12)
2

As long as t is sufficiently small that the negative part is less than the positive part,
the denominator is well behaved. Once the value of t gets bigger than one, however,
the denominator actually begins to get smaller, and the calculated force strength
becomes larger instead of smaller. This effect is clearly incorrect. From this behavior,
we can calculate the limits on time of the behavior of the approximate solutions,
Equations (VI1.B-9). One of the denominators of these equations will have a maximum

value when
t=|A . (VI.B-13)

This value of time is the point where the approximation has definitely become
incorrect, so use of the approximation should be limited to values of time which are
a fraction of this value (say 1/3 or 1/2.)

Linear Law Near-Draw Solutions

Delta = 0.05

F 200
¢ 180
c 180
e

::g Red Exact
f 100 Blue Exact
r 80 5 >< Red Near-Draw
- .
o &0 >< Blue Near-Draw
o
- 40
h 20

Ople—e15——tHo—hs—=210—=2i5
Time (arbitrary units)
Figure VI.B-1

The student may note that this limitatior: on the validity of the approximation
really is another statement of the smallness of A;. The approximation is good only
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Linear Law Near-Draw Solutions
Delta = -0.05

F
o
r
C
° ——3 Red Exact
"‘;:’ 122 Blue Exact
r 1 > Red Near-Draw
o 80 285 >< Biue Near-Draw
n 80 X
‘t' 40
h 20
Oplo——e15——116——HE—210——2i5
Time (arbitrary units)
Figure VI.B-2
Linear Law Near-Draw Solutions
Delta - 0.5
F 200y«
0 3 -
[
e Red Exact
S Blue Exact
: >< Red Near-Draw
® > Blue Near-Draw
n
o e
t
Oplo——o15——tHo——ti5——216—2i5
Time (arbitrary units)
Figure VI.B-3

for small magnitude values of A,. Since the expansion that was used to derive the
approximation was based on the product of A, and t being small, it is readily seen that
this product must remain small for the approximation to be valid. Thus there is a
balance between the value of A, and of t. As long as the battle is short enough in
duration, a large value for A, is admissible. Conversely, for a small value of A,, long
duration battles may be approximated.
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Linear Law Near-Draw Solutions

Delta = -0.5

2005,
180 _f\

180 _
140

P L,

TJ+Q IO+ OO0
3

Oplo—0i5——HO——tHE5—2i0—=2i5

Figure Vi.B-4

Time (arbitrary units)

Linear Law Near-Draw Solutions

Delta = -1.0

><

I+~QJI0~(p O0=0T
:

Figure VI.B-

5

Time (arbitrary units)

ViI-8

Red Exact
Blue Exact

Red Near-Draw
. Blue Near-Draw

XX | |

Red Exact
Blue Exact
Red Near-Draw
Blue Near-Draw




VI.B.2 Near-Draw Square Law Approximation

For the square law, Equation (V1.B-3) may be explicitly rewritten as

B - _E(A +i)_ . (VL.B-14)
o 2BA

which we may more usefully rewrite as

2p4% + A, (VI.B-15)

1
B = — ’
5 2p4

where 8 has been defined earlier in Chapter IIl.

If we now substitute Equation (VI.B-15) into the appropriate square law attrition
differential equation, Equation (lll.A-4),

44 _ _o B, LA-3), (VI.B-16)

dt

and rearrange the result slightly, we may write the exact differential equation

2BA dA  _

-y dt. (VI.B-17)
2BAZ + A,

This equation may be directly integrated since the numerator is the exact derivative
(to within a constant) of the denominator,

d(2BA% + A,) = 4BA dA, (VI.B-18)
to vield
A(r)
In(2BA42 + A,) | = -2yt (VI.B-19)
Ay

The limits may be applied, and the antilogarithm taken,

A(2)? + ;L; L _5‘_& o211, (V1.B-20)

We may rewrite Equation (VI.A.2.3) as
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A = A2 &2 - 224 _ p2vr), (VI.B-21)
2p

The functional form for A(t) may be formed by expanding the square root since A, is,
by assumption, small (the near-draw situation) to yield

A
At) = Ay e - 22 sinh(y?). (VI.B-22)
2BA;

(Alternatively, if t is small, the first left hand side terms is larger than the second,
regardless of the value of A,.) This equation, (VI.B-22) is the near draw approximation
of the square law for the Red force strength. The equivalent equation for the Blue
force strength may immediately be written using symmetry as

A
B(t) = By e"* + —2— sinh(y?). (VI.B-23)
2(!30

We again compare the exact and approximate solutions in a series of figures,
numbers (VI.B-6) - (VI.B-8). In the first figure, values of A, = -200, and y = 0.14 are
used. Quite good agreement can be seen despite the large magnitude of A,.
(Remember, it is the size of A, relative to the final force power that is important here,
since we are allowing t to become large.) Somewhat worse agreement at long time
may be seen in Figure (VI.B-7) where values of A, = -2000 and y = 0.14 are used.
We see however, that catastrophe occurs in Figure (VI.B-8). The catastrophe occurs
when the second terms in Equations (VI.B-22) and (VI.B-24) become larger than the
first terms. Mathematically, the catastrophe occurs since sinh{yt) contains a term «
e". The catastrophe may be avoided by ensuring that the approximations are not used
when the second terms are large compared to the first terms.
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‘ Square Law Near-Draw Solutions
Delta = -200
190

180

170
180 == Red Exact

150 Blue Exact

140 >< Red Near-Draw

130 >< Blue Near-Draw

120
" 110

T+QIO-H0 00~0T

Time (arbitrary units)

Figure VI1.B-6

Square Law Near-Draw Solutions
Delta = -2000

N =0mMm

A N - - B W ]

18 —3
Time (arbitrary units)

Figure VI.B-7
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@O0 0N

Tl 30 QN

Figure VI.B-8

Square Law Near-Draw Solutions
Delta = -20000

—1- t
Time (arbitrary units)
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VI.B.3 Near-Draw Mixed Law Approximate Solutions

As we would expect from what we have seen in the two preceding sections on
linear and square law near-draw approximations, expansion of the conclusion
condition for the mixed law is a mixed approach. The conclusion condition cannot be
expanded for the Blue force since the conclusion condition is already linear in Blue
force strength. Substitution of the conclusion condition in the Red force attrition
differential equation thus would result in the exact differential equation whose solution
was developed in Chapter lll. This is exactly what we would expect from the Red
force attrition differential equation being linear-like.

Alternately, the conclusion condition for the Red force strength can be
expanded and substituted into the Blue force attrition differential equation as an
approximation. This is not a desirable prescription however, as it would result in an
exact Red force strength solution and an approximate Blue force strength solution.
A more useful approach is to proceed in the same manner that we sketched the mixed
law draw case approximation in Section IV.D. In this case we use the expansion

sec(x) =1 + 1‘23 (VI1.B-24)

and proceed as before in Section IV.D. This allows us to write

A.o - Amt

Alf) = 22— | (VI.B-25)
1 + BAyt
and
BA, 12
B (1 i ] (V1.B-26)
B(t) =
(1+ B Ayt

We do not present figures depicting the behavior of these solutions, leaving them as
an exercise for the student, but do note that care must be taken that the numerators
of Equations (VI.B-25) and (VI.B-26) remain strictly positive (which depends on the
sign of A,..)
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VI.C Draw Solutions

The draw situation arises when the conclusion condition is exactly zero. In
other words, when the fighting power of the two forces are exactly equal. Unlike the
near-draw solutions presented in the previous section, which are approximations and
therefore not unique, the draw solutions are unique and exact, and as we shall
examine later in the chapter on historical insight, enjoy a special place in Lanchester
theory.

As we have noted before, the draw situation is also a special case from an
attrition, as well as a mathematical standpoint. If combat for the draw situation is
carried to a conclusion, neither side will have any units remaining. This does not
necessarily mean that the forces of both sides would be zero, but rather that they
have no units capable of fighting. This is, however, a philosophical concept that we
will not pursue further here. It is sufficient to assume that the mathematical
interpretation is valid - that there are no units left on either side.

(I am always reminded whenever | consider the draw solutions of a cartoon

drawn by Gahan Wilson some years ago which shows a sole surviving soldier in CBR
gear amidst the ruins of a battlefield, shouting "We won - | think.")

VI.C.1 Quadratic Law Draw Solution

(We depart here from the usual order: linear-quadratic-mixed; to allow the
natural introduction of an approximation to the draw solutions for the linear and mixed
law cases.)

In the draw case for the quadratic law, the state solution reduces to

(!Bz = BAZ, (VIC-1)

which we may simplify as

) B =% o (VI.C-2)

and substitute into Equation (lll.A-4)

dA _ _4 B, (VI.C-3)

(and its conjugate,) to get
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a4 _ _, 4. (VI.C-4)

dt

This differential equation has the direct (and immediate) solution

A(t) = Ay e, (VI.C-5)

with a conjugate solution

B(t) = By e™"". (VI.C-6)

We may note immediately that in the draw situation, quadratic law combat is
infinite in duration. If we compare this attrition process with any other quadratic law
attrition, we find the draw situation to take the longest time. This factor will be of
considerable impact when we investigate the historical insights of attrition.

VI.C.2 Linear Law Draw Solution

For the linear law draw case, the state solution reduces to

B=-E£a4, (VI.C-7)
o

which may be substituted into the appropriate attrition differential equation, equation
(l1.A-2), to yield

dA _ _p 42, (VI.C-8)

This differential equation has the solution
4y

) (VI.C-9)
1 + B4yt

A(t) =

The solution for the Blue force strength may be formed using either symmetry,
or from the same prescription as above, as

B(?) = _ B (VI.C-10)
1 + aByt

Note that because of the form of equation (VI.C-1), the denominators of equations
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(VI.C-9) and (VI.C-10) are equal. Further, as was the case with the square law draw
solution, the linear law draw situation battle is of infinite duration if fought to a
conclusion. (Note that equations (VI.C-9) and (VI.C-10) follow directly from equations

(VL.B-9) when A, = 0.)

Earlier, we mentioned that the square law draw solutions would be developed
first so as to naturally admit an approximate solution for the other two draw solutions.
In the previous section, we derived the square law draw solutions which were simple
exponentials in form. If we make use of the logarithm approximation introduced in the
preceding chapter,

In(1 +x) = x, x small, (VI.C-11)

then we may introduce an approximate form of equations (VI.C-9) and (VI.C-10), for

small value of t,

A(t) - AO e'ﬂAot, (VI.C-12)

and
B(t) = B, ¢ *™". (VI.C-13)

These two equations are known as the exponential approximations for the linear law
draw solutions. They are useful in comparisons among the three draw solution sets.

VI.C.3 Mixed Law Draw Solutions
For the draw solution of the mixed law, the state solution reduces to

2« B=p A2 (VI.C-14)

which may be substituted into the mixed law attrition differential equations, equations
(H1.A-6) and (Ill.A-7) to yield

j—tA = —% A2, (square-like) (VI.C-15)
and
3
dB _ _/2aP B2 (VI.C-16)
dt ’

We note that the square-like attrition differential equation, equation (Vi.C-15), has the
same form as the linear law draw situation differential equation (VI.C-8), but differs
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in the factor of %2. This differential equations has the solution

_ 0
A = — s (VI.C-17)
1 +
2

Thus the rate of loss of Red units in this square-like solution is one-half of that in the
linear law case.

The solution of the linear-like differential equation, equation (VI.C-15), is

By

2’ -
[ - Y‘/p;t] (VI.C-18)
V2

B(t) =

where y has the same definition introduced in Chapter lll.
These two solutions have the exponential approximations

BAgt
A(F) = 4 e-——z—"—’ (VI.C-19)

which has one-half the rate of attrition of the linear law exponential approximation,
and

B(t) - Bo e"Y 230‘ (Vl.C‘ZO)

Note that the mixed law attritions proceed according to different time scales.

As in the square and linear law draw cases, battle to a conclusion for the mixed
law draw situation has infinite duration.
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VI.D Inverse Solution

Under normal conditions, the object of interest is the solution set of the
Lanchester attrition differential equation with the initial force strengths as (boundary)
conditions and the attrition rates as parameters. In this section, the object of interest
is the square law solution set with initial and "final" force strengths as parameters 1o
provide functional solutions for the attrition rates. We limit ourselves to the square
law because the linear law is transcendental in the initial force strengths and attrition
rates. Further, we also limit ourselves to constant attrition rates.

The square law time solutions may be written as

A(t) = A, cosh(yt) - & B, sinh(yt), (VI.D-1)
and
Ay .
B(t) = B, cosh(yt) - 3 sinh(yt? ), (VI.D-2)
where: y = V/(aR), and
6 = Vi(a/R).

If we assume that the initial force strengths A, and B,, and the force strengths A(r)
and B(r) at some time 7 are given, then these two equations have two unknown, y

and & (or equivalently @ and B.)

By eliminating J, we may find after a bit of algebra, that

AgB, + A(7)B(x) (VI.D-3)
A,B(<) + A(7)B,

cosh(yz ) =

The student will note that this quantity is always positive, but may be infinite when
A(r) and B(r) are zero; at the conclusion of a draw battle. If we next exploit the
definition of the arc cosh function,

cosh™'(x) = In{x + 32 - 1), (VI.D-4)

the above equation may be further reduced to

ve = nfdyBy + A(2)B(3) + |[4Z - AGF) (85 - BGeF ] ), (VDB

which allows us to solve for y.

Similarly, some algebra also allows us to write
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A2 - A=)

, (V1.D-6)
BZ - B(z)?

82 =

which is just a restatement of the state solution.

Equations (VI.D-5) and (VI.D-6), with the definitions of y and é, may be used
to calculate values of @ and R given the initial and final (or even intermediate) force
strengths and the duration of the conflict. We shall return to these equations in the
chapter on historical insights of attrition.”

* The student with access to the limited DoD literature may wish to compare these equations with
those derived by Robert L. Helmbold in "Lanchester Parameters for Some Battles of the last two
hundred years", Combat Operations Research Staff Paper CORG-SP-122, 14 February 1961,
AD481201, LIMITED. Because this book is limited to the "open” literature, we cannot include
information that is either classified or limited, as Dr. Helmbold’s report is.
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VI.E. Integral Equation Formalism .

So far, we have considered only analytical solutions of the attrition differential
equations and attrition rates which are constants. In subsequent chapters of this
book, we shall encounter attrition differential equations for which we cannot find
exact, analytical solutions and attrition rates which are not constant. Further, all of
the Lanchester combat models that we have considered thus far have been for
homogeneous forces (where the two opposing forces could be considered
mathematically as only two homogeneous collections of units.) In subsequent
chapters, we shall also consider heterogeneous forces.

In this section, we introduce an alternate formalism for the attrition process
where we replace the differential equations with integral equations. This
representation, while exactly equivalent to the differential equation representation,
serves several purposes: it facilitates the consideration of attrition processes for which
we cannot necessarily find exact analytical solutions such as the many problems with
heterogeneous forces and/or variable attrition rates, and it provides a natural basis for
the discussion and development of numerical calculation methods which may be used
with digital computers to find approximate solutions. (These are introduced in the
next section.)

To introduce the integral equation representation, we first write the quadratlc

law attrition differential equation in the form .
a [A] - - (0 “] (A), (VI.E-1)
dt \B) B O)\B
where:
(A (VI.E-2)
B .
is an array of force strengths and o
0 « | (VI.E-3)
p 0

is an array of attrition rate constants/functions.
As a shorthand, we will denote the force strength array as [F], and the attrition rate
array as [{]. This allows the square law attrition differential equation to be written in

matrix form as
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21F1=-1C1IF]. (VI.E-4)

(Whenever possible matrix notation such as this will be used to keep the notation
compact. Only when some point of the exposition necessitates it will we explicit
write the matrix equations in element form.)

We next directly integrate both sides of equation (VI.E-1) with respect to time,
and rearrange the result slightly (taking advantage of the fact that the left hand side
of equation (VI.E-1) is an exact differential.) This gives

[A(t + At)) } [A(f)) _ ft+At (0 “) [A(t/)) dr’ (VI.E-5)
B(r + Az)) \B@)) Y+ o/laey) '

This equation is the (exact) quadratic law attrition integral equation. In array (or
matrix) notation, this may be written as

[F(t + AD)] = [F(0)] - [*"* [C] ()] at'. (VI.E-6)

t

If welett + At = t’, since At only indicates some increment of time, equation (VI.E-
5) may be substituted into itself, yielding (in the matrix notation of equation (VI.E-6),
which we shall hereafter use interchangeably.)

[F(z + An)] = [F0)] - [ 7™ (L] IF()] aF’ (VI.E-7)

+ ft+At [c] dl'/ ]‘:/ [c] [F(t//)] dt”.

t

t + At

The first integral on the right hand side contains a force strength array which is
independent of the variable of integration, and indeed, is equal to the force strength
array which is the leading term on the right hand side of the equation. As a result,
we may rewrite this equation as

[Fe + AD] = (141 - [17 % [¢] ar’ ) [F(o)]

t

+ ft-rAt [C] dtl f:l [C] [F(t”)] dt//,

t

(VLE-8)

where [1] is the identity matrix.
At this point, we make use of a delicate point in the integration of matrices.

Students who are unfamiliar with matrix algebra may wish to consult a text book on
this subject. The delicate point is that we may bring the integral inside the matrix in
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the first term since that integral has only one term. Thus ‘

ft+At [c] dt, -

t

I
.-
+
%
P eatu—
- O
S
N——_————
QU
a8

ft + At 0 dt’ ft + At « dt! (VI.E-9)
t

f:+Atht/ ft+At0dt/’

t

obviously, all the integrals over zeroes are themselves zero since the integrals are
definite. If we denote the integrals over the attrition rates as

alt + Af) - alf) = f:  o(t)) dt, (VL.E-10)

and

(e + A1) - B(5) = [T p(e) at, (VLE-11)

This notation (the underscore) takes into account that the attrition rates may be
functions of time. We also make use of the finite difference operator A to further
write these attrition rate integrals as Aa(t) and AR(t), where the finite difference ‘

operator is defined by

Af(t) = f(¢ + A1) - £(2). (VI.E-12)
The integral over the attrition rate matrix may then be written as
[ YR1ar - A:(t) M;(t)] (VI.E-13)
= A[£)(2),
the integral equation may now be written
[F(t + Af)] = ([1] - A[LI(2) ) [F(2)] (VLE-14)

+ [T 1N a [T 1) [F()] de.

The substitution process may be repeated indefinitely to produce even more
leading terms which are not integrals and a final term which is comprised of n
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repeated integrals each over the attrition rate matrix times (finally) the force strength
matrix, where n-1 is the number of substitutions of the primitive integral equation,
equation (VI.E-b).

The linear law attrition differential equations may be converted to integral
equations in a similar manner except that we start by writing the differential
equations, equations (lll.A-2) and (lll.A-3) as

14d4 __, B, (VI.E-15)
A dt

and
14dB_ g4, (VI.E-16)
B dt

These differential equations may be written in matrix form as

G oJal--0I6 e

[F] % I = -1¢] IF], (VIE-18)

or

where [F'] is the diagonal matrix of inverse force strengths. At this point, we must
introduce the concept of the inverse of a (square) matrix, defined by the equation

417 4] = [A] [A]' = [1], (VI.E-19)

where, as before, [1] is the identity matrix. The inverse matrix that we are interested
in here is [F']" given by

F] - (A o) (VI.E-20)
0B

The student may confirm that this is indeed the inverse of [F'].

We may now write equation (VI.E-18) as
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4 1F] = -[F .E-2
7 [F] = -[F']7" [¢] [F]. (VL.E-21)

Using the same integration prescription as for the quadratic equation,‘this becomes

[F(z + AD)] = [F@)] - [ F()]7 Q) IF(e)] ar,  (VIE-22)

t

which may in turn be cross substituted to yield

[F(z + An)] = [F()] - [ [F ()T 121 [F(e)] af’ (VI.E-23)

t

N f:+Az [F'1(t/)]'1 [C] dt’ f:l [F-1 (t”)]”‘ [C] [F(t//)] dr”.

t

We may again perform the first integral as before except that the integration must be
performed on the individual elements of the product of the two arrays [F']"" and [{].
That is
AEZT [E)() = [17% ar [P () [2)
[["*foar f:‘ «B(t') dt’

4

= . . (VI.E-24)
f: At BA(Y)) dt f: 40 dr’

0  AaB(r)
ABA(r) O

where:

AgB(t) = f:*“ « B(t') dt’ VLLE.25)

ABA(t) = f”A' B A(t') dt'.

t

The attrition rates may, again, be functions of time. Equation (VI.E-23) may now be
rewritten as

[F(e + a9)] = ([1] - AQEZIL] )(2) ) [F(9)] (VI.E-26)
+ [T [Ea [C )] [ FE)] a

The mixed equations may be transformed in the same manner: the differential
equations may be written in the form
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®  [aatan e

or.

[F5'] f; [F] = -[¢] [F]. (VI.E-28)

The matrix integral equations for the mixed law thus looks like equation (VI.E-17),
except that [F']" is replaced by [Fg'1"? (or [F, 1" if the Red force is linear-like.)
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VI.F. Numerical Approximation

Generally, we do not know the analytic form of the force strengths although
we will normally know the analytic forms of the attrition rates if they are functions
(assumed of time.) Thus the introduction of the integral equations does not inherently
offer any advantage in finding analytical solutions for the force strengths. Frequently,
the attrition differential equations are sufficiently complex that they cannot be solved
directly. This is especially true if heterogenous forces or attrition rate functions are
involved. In these cases, approximate solutions must be found, usually in numerical
form using a digital computer.”

The student should not be daunted by the need for a computer, however.
Viable attrition simulations applying these numerical methods of solution may be
formed from the attrition models in this book using spreadsheet programs such as
LOTUS 1-2-3 (R). Most of the calculations in this book were performed in
spreadsheet simulations using LOTUS. The use of such spreadsheet simulations is
muitiply handy since the entire simulation is readily open to inspection - the internal
workings and equations are not hidden in arcane computer code; the input boundary
conditions, attrition parameters, and the attrition equations themselves are available
for easy modification and examination of excursions; and, finally, the calculated
solutions are easily displayed graphically using the spreadsheet program’s graphics
capabilities. The student who is familiar with these programs but may not find the
exposition here sufficiently clear may wish to refer to Orvis’ book’ which discusses
the solution of differential equations (and other higher mathematical problems) using

LOTUS.

In the preceding section, we derived the matrix integral equation for the
quadratic law as

[F(t + Af)] = [F(£)] - f:*‘“ [¢] [F(¥)] dt'. (VI.F-1)
The matrix integral equation for the linear law is
(e + 9] = [FO] - [ YA [ d. VIF-2)

These equations readily lend themselves to numerical integration if we introduce one
of a variety of integration approximations. Inherent to all of these approximations is

* Actually, an analog computer can be used, but analog computers’ are relatively rare today while
digital computers are relatively common. See Leslie G. Callahan, Jr., and Glenn Crosby, "Lanchester
Modeling of Small-Unit Combat, U.S. Army Missile Command Technical Report RD-CR-83-17,
November 1981, AD8076783, LIMITED.
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the requirement that some time interval At be set to a constant. The value of &t will
be the critical factor in the accuracy of the approximate integration since all of the
approximations we will use in this section will have errors of order At?. More
complicated (that is, higher order in At) integration approximations may be used in a
bootstrap manner, but these will not be discussed here as they bring much complexity
an little insight into the approximation process. The student who is interested in these
higher order approximations is referred to a standard text on numerical approximation
such as Carnahan, Luther, and Wilkes.?

It is not our purpose here to provide a textbook on numerical methods as
applied to attrition mechanics, but rather to sketch the application of simple numerical
methods which will be of use to the student in performing simple, but hopefully
insightful calculations (such as spreadsheet calculations) in an independent manner.

The first integral approximation that we introduce is the zeroth order or -
rectangular rule. In this case, the function under the integral is approximated by its
value at the lower (or upper) limit of the integral. Thus

[ ey d « fio) A, (VIF-3)
This approximation is called the rectangular rule because the area represented by the
integral is approximated by a rectangle of height f(t) and width At.
If we use this approximation, the matrix quadratic equation becomes

[F(t+A0)] = ([1] - [C(5)] Az) [F(2)]. (VI.F-4)

It is useful, for the homogeneous force case, to write the individual elements of this
matrix equation as

A(t + At) = A(t) - a() B(r) At, (VIL.F-5)

and |
B(t + At) = B(t) - B(z) A(z) A, (VI.F-6)

Whence here, and later, we have (and will usually,) assume the attrition rates to be
functions.

Equations (VI.F-5) and (VIL.F-6) may be directly substituted into simple
simulations such as an electronic spreadsheet.

The matrix linear law integral equation may also be approximated using this
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integration rule as
[F(z+A7)] = ([1] - [F7'@17 [¢(9)] Az) [F()]. (VLF-7)

The individual elements of this equation, for the homogeneous force case, may be
written as

A(t + At) =« A(T) - A At B i
¢ " = ( gT)— a(tgt%(‘;)(t)m )tA((tt)), (VI.F-8)

and

B(t + At) = B(T) - B(r) B(r) At A(z) (VI.F-9)
= (1 - B(r) A(z) At) B(z). ;

Note that both the quadratic and linear law force strength approximations, equations
(VI.F-4)-(VI.F-9), can be solved directly.

A more complicated integral approximation is the first order or trapezoid rule.
In this case, the function is approximated by a straight line (first order Taylor’s series.)

Thus

[ ey a - f(t+At; + f(1) (VI.F-10)

If we use this rule, the matrix quadratic integral equation becomes

([Z(z+AD] [F(z+AD)] + [¢(n)] [F(2)] ) Az (VI.F-11)
2

[F(z+A2)] = [F()] -

which may be rewritten after some rearrangement as

L [2(t+An)] At . - _ [(x)] At
© AOLA ) e an) - (111 - LIRS e,

(VLF-12)

If we calculate the inverse of the leading term matrix on the left hand side of this
equation, this is just

. - VI.F-13
(F(t+A1)] =([11 Lt Az”)“’)1([11 —[—‘—"lzl—é—t)[z«'(t)l.‘ 19

(The student should note that the first left hand side term in the above equation is a
matrix inverse!) Since most simulations, especially those using spreadsheets, do not
readily lend themselves to performing inverse matrix calculations, we shall devote a
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‘ little effort to simplifying this equation for the homogeneous force case.

The matrix to be inverted is

1 a(t+At) At
(] + L@ Az 2 | (VI.F-14)
2 pgt+A2t) At 1 _
Inspection allows us to write the inverse as
1 _a(t+At) At
([1] () At)-1 = 2 D!
2 _B(e+Ar) At 1 . (VLF-15)
\ 2 |
- - Stran)] At ) D1
\ 2
where:
‘ D = (1 _ aft+Ar) B(z+At) Af? ] (VI.F-16)
4

The student can readily confirm that this is the inverse matrix by performing the
requisite matrix multiplication.

We may now substitute this equation into equation (VI.E-13) to yield

[F(z+A1)] = ( [1] - [C(t+2t)l At ) D1 ([1] _ [C(t;.] At ) [F(t)iYI.F-W)

This equation may be multiplied out as
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[F(z+A2)] = ( ] - [C(t+z;t)] At _ IC(t;] At

, @ADL A2 | bt g
4

(VI.F-18)
1 - a(t+At) B(1)A?  (a(t+Atr) + a(z) ) At
= 2 2 D [F(2)].
_(B(z+Ar) + B(r)) At 4 _ «(2) B(z+At) At
2 4
The individual elements are
4 _ &(t+A1) B(z) A
4 -
A(t+At) = A
(+81) q - altrAq) B(t+At) A )
4 (VI.F-19)
(a(t+At) + a(t) ) At B(1),
o 1 . alt+Az) B(z+A?) Atz)
4
~and
4 - B(t+A?) a(2) At?
B(t+At) = 4
PRC((22°Y)) B(t+At) AL?
4 (VI.F-20)
(B(e+Az) + B(r) ) At A(2),
o[ 1 al+a1) B(+AD) Atz)
4

These equations are readily usable in a spreadsheet simulation

The matrix linear law integral equation may also be approximated using this
rule, but the result is much less satisfying. The form of this solution is
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[F(z+A2)] = [F(2)] - [F(t+A0)]" [{(2+A1)] [F(z+A2)] %

A (VI.F-21)
- [F @1 [60)] F015
which may be rearranged as
TP -1 +
([1] o (22 A0)] 2[C(t A1)] At) [F(z+A7)] = (VI.F-22)

([11 _ [F"‘(t)]"2[C(t)1 At) Fol.

The nonsatisfactory aspect of this approximation arises from the fact that [F'(t + At)]"
is itself a function of the force strengths. Specifically,

L [F(e+AnD]7 [E(2+Ar)] At
2

(1 0)+At(A(t+At) 0 J[ 0 a(t+Ar)
2
1

[1]

ft

B(t+A7) O J (VI.F-23)

01 0 B(t+At)
at+At) Bz+At) At
_ S 2
B B(t+At) A(t+A¢t) At 1

2

There are at least two simple approaches to proceeding with this approximation. We
may take equation (VI.E-22) and write out the elements. By cross substitution,
B(t+ At) and A(t+ At) can be eliminated from the equations for A(t + At) and B(t + At)
which are quadratic in these variable. These resulting quadratic equations can be
solved algebraically. The alternate approach is to take the inverse of the above
equation,

(] » AN (G ean] Ar)
2
1 _aft+At) B(t+At) At (VI.F-24)
2

_ B(z+Atz) A(z+Ar) At

1
2

and approximate A(t+ At) and B(t + At) with their zeroth order approximate solutions.
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The resulting equation is directly solvable. Development of this equation is left as an
exercise for the student.

There are, of course, other numerical approximations which may be used, even
for the simple homogeneous case considered as a theme here. Further techniques wiill
be developed in later chapters as they become necessary. Key here is that we have
laid the basis for the expositions on historical insights and heterogeneous forces to be
covered in subsequent chapters.

1. Orvis, William J., 1-2-3 for Scientists and Engineers, Sybex, San Francisco,
1987.
2. Carnahan, Brice, H. A. Luther, and James O. Wilkes, Applied Numerical Methods, John Wiley

and Sons, New York, 1969.
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VI.G. A Combined Law Attrition Example

In this section, we consider a set of combined law attrition differential equations,

ié:-aB—d)AB, (VI.G-1)
dt

and
gt£ =-BA-yAB, (VI.G-2)

where the attrition of each force is both linear (area fire) and quadratic (direct fire.)
The Red and Blue forces are considered to be comprised of units which both use
weapons which have area and direct fire characteristics. This problem verges on a
heterogeneous force situation (where there would be direct fire forces and area fire
forces which all attrit each other,) but makes no distinction as to any differential
losses between the two types of weapons, nor any distinction as to the composition
of the units or forces. Any fire allocation fractions (the relative amount of each force
aliocated to each of the two types of fire) is assumed to be included in the attrition
rates, which, for convenience, are also taken to be constants. An example of this
type of force could be one comprised entirely of infantry units which completely
integrate rifles (direct fire weapons) and machine guns (which have a beaten zone of
fire - area weapons,) and attrition is such that no distinction in losses of the two types
of weapons is made. This might occur if doctrine dictates that a constant ratio of
rifles to machine guns is maintained in each unit as it takes losses. Soldiers in the
units would then be presumed to be crosstrained in the use of both types of weapons
and ammunition resupply would not be a problem.

If we factor equations (VI.G-1) and (VI.G-2), and eliminate time as the
independent variable, the single differential equation in the force strengths is

dA _ (¢ + ¢4) B (VI.G-3)
dB (B +VyB) A’

which may be written in its exact form as

«+ 4 P+y

Integration of this exact differential equation gives the state solution as
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A‘Ao_!_m“*M):B‘BO_imB_“:M, (VI.G-5)
¢ $* (@ + ¢4, Yy y2 \B + ¥B,

This state solution is clearly transcendental - it cannot be written in a form which
allows one force strength to be directly expressed in terms of the other force strength
and the initial force strengths and attrition rates. Thus, the method of normal forms
described in Chapter lll cannot be applied to this problem. As such, it represents one
of a class of problems which possess state solutions, but which cannot be solved
using the normal forms method because of the complex form of the state solution.

If we limit the solution to small losses only, where A and B do not greatly differ
from A, and B,, respectively, then the state solution may be expanded. (The validity
of this approximation will be examined in the subsequent chapter on historical
insights.) To perform this expansion, we write

A=4,-Ad (VI.G-6)
B = B, - AB,
and rewrite the state solution as
A4 _ e .n(1 i _4>_AA_J _AB_p .,,(1 ) _w_?_) (VI.G-7)
¢ ¢? o + ¢4, ¥ y? B + ¥By)

_ which may now be expanded using the previously defined expansion of the logarithm.

This gives :

20 + 64, A4 _ 2B + YB, AB (VI.G-8)
a + 4, ¢ B+vB, ¥

This approximate state solution may be written as

4-0 2B+ UB o+ o4 AB. (VI.G-9)

A
¥ ﬁ*‘l’Bo 2a+¢Ao

If we define the constant term on the right hand side as 8, then this equation may be
rewritten, using the definitions of AA and AB, as

A = 0B + (4, - 6B,), (VI.G-10)

a linear-like approximation to the state solution which is actually infinitely multiple
order (linear plus quadratic plus all higher orders.)

If equation (VI.G-10) is substituted into equation (VI.G-2), the resulting
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hdmogeneous differential equation is

9B . _(B + $B) (6B - (4, - 0B,)), (VL.G-11)

dt

which has the solution
(Ao _ OBO) (B + WBo) e'[‘?(ﬁo“eBo) - po)e _ BAO
WAy - (B + YBy) e ¥\~ 0B - POk -

B(2) = (VI.G-12)

The Red force solution can be derived in the same manner, but for brevity is merely
presented here as

WA - 8(B + YBy) ¢ ¥\t " OB = ROk

A(t) = (VI.G-13)

Derivation of this equation is left as an exercise for the student.

Examination of eqUations (VI.G-12) and (VI.G-13) reveals that the solutions of the two
equations are linear-like in form. This is a direct result of the approximation process.

While approximate time solutions of the force strengths could be calculated
using numerical approximation, an analytical approximation technique was selected
to be an example of how such approximations may be applied. In general, analytical
approximations are preferred to numerical ones because of the portability of the
approximations and the analytical solutions are easier to probe mathematically for
insight, which is the ultimate goal of the techniques described in this book. Of
course, an exact analytical solution is always the preferred result, but in many cases
of greater complexity than the pure attrition differential equation forms of linear,
quadratic, and mixed law, the state solution either does not exist or is transcendental
(as in this example) and cannot be use in solving the differential equations. Failing
thus to be able to solve the attrition differential equations exactly, the investigator is
forced to make use of some method of approximation to find solutions. Both
analytical and numerical approximations have their places and relative merits and
demerits in the search for solutions. Approximate analytical solutions have the
advantage that they are more easily manipulated on paper, and the interplay of
parameters such as the attrition rates may be more clearly seen. They have the
disadvantage that the approximation generally has limits on its applicability and care
must be taken not to draw conclusions which are too general and transcend the limits
of the approximation. Numerical approximations may actually be more generally
accurate within the limits on the step size of the numerical integration, but they are
hopelessly coupled (in most cases,) to the digital computer, and insight into the
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interplay of parameters must be gained laboriously from repeated calculations. A good
technical approach therefore is to make use of both types of approximation in working
real problems, combining the insightful nature of the analytical approximations with
the relative exactness of the numerical approximations.

The differential equations of this example can, of course, be solved numerically,
but it should be noted that the form of the matrix equations would be different from
those derived in the preceding section. Using the notation of the preceding two
sections, we may write the matrix integral equations for the differential equations of
this section as

t+At

[F(t+A7)] = [F(t”,; ,f‘ [<] [F(e)] ¢/ (VI.G-14)
- fz [F“(ﬂ)]" [n] [F(z))] 3¢,

where: [{] is the array of quadratic-like attrition rates, and

[n] is the array of linear-like attrition rates.
If the student wishes to solve this integral equation numerically, care should be taken
with use of the trapezoid rule because of the complexity of the resulting solutions.
Use of the rectangular rule with a smaller time step size is fraught with much less

difficulty.
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VI.H. Quadratic Lanchester Law with Reinforcements

In the preceding section, we considered an example of a set of attrition
differential equations which had a transcendental state solution. In this section we
consider a set of attrition differential equations which do not possess a state solution
at all. The problem that we consider here is that of the classic quadratic law
differential equations with the addition that reinforcement of the forces is included.
The differential equations are

4 _ _, B+ a(r), (VI.H-1)
dt -

and
dB
22 - B4+ b)), (VI.H-2)
o B A+ br)

where al(t) and b(t) are the reinforcement rates of the red and blue forces,
respectively. For generality, these reinforcement rates are assumed to be known
functions of time: they may be constants or they may be punctuated - that is,
reinforcements arrive only at certain times and in numbers. It is assumed that the
reinforcement rates are not functions of the force strengths - that problem will be
considered in a later chapter.”

This set of attrition differential equations does not possess a state solution
since a(t) and b(t) are presumed to be functions of time. In the extreme case where
the reinforcement rates are constant, then a state solution does exist. That special
case is not considered here as its solution is a direct application of the methods
developed earlier, largely in Chapter lll. (The method of normal forms may be applied.)

If we were to proceed to solve this set of attrition differential equations
numerically, the matrix integral equation could be formed immediately as

_ B t+At /
[Fz+an)] = [F)] - [ [2] [F(e)] @' (VI.H-3)

t+At / /
+
[ Ra) ar,
where [R(t)] is the matrix of reinforcement rates. This integral equation can be solved
numerically using the integration approximation techniques described in preceding
sections of this chapter. We shall not invoke those techniques in this section (except

Care must be taken when the reinforcement rates are punctuated when using numerical
approximations. In an analytical sense they are represented by a Dirac delta function so that when
they are carried over, these are replaced by one (or more) Kronecker delta functions.
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as a sidebar,) but we will in the conclusion to this section invoke a similar
approximation.

Rather than pursue a purely numerical approximation, the approach here will be
to pursue an analytical solution to the maximum extent possible. Engel' solved this
problem for a(t) = 0 in his consideration of the lwo Jima campaign of World War II.
The derivation here parallels his technique but expands to the more general case
where both forces have nonzero replacement rates.

In solving the attrition differential equations, equations (VI.H-1) and (VI.H-2), use is
made of the analytic solutions of the quadratic law attrition differential equations,
equations (lll.A-4) and (lll.A-5), solved in Chapter lil, to write solutions of the form

A(z) = A*(2) cosh(yz) ~ & B*(z). sinh(y?), (VI.H-4)
and
B(t) = B(#) cosh(y?) - %") sinh(y1). (VI.H-5)

If we differentiate equations (VI.G-4) and (VI.G-5), and substitute both these
equations and their derivatives into equations (VI.G-1) and (VI1.G-2), and remove those
terms represented by equations (VI.G-4) and (VI.G-5) (those undifferentiated in A*(t)
and B'(t),) the resulting differential equations are

dA” . dB*
h 22 - & sinh = a(1), (VI.H-6)
cosh(yt) 7 sinh(y?) s a(t)
and
dB* 1 _. dA’
cosh(yt - — sinh(yt = b(t), (VI.H-7)
(y9) = - 5 sinh(yz) 2= = b(r)

For this solution, it is convenient to write equations (VI.G-6) and (VI.G-7) in matrix

form as
cosh(yt) - sinh(yt) .
1. a4 _ [“ , (VI.H-8)
oy sinh(yz) cosh(y?) | dt\p b

*

Since the leading matrix on the left hand side is hyperbolic, we make use of its inverse
to rewrite equation (VI.G-8) as
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. cosh(yz) & sinh(yz?)
d(A]_1 (v) o [") (VI.H-9)

- —gsinh(yt) cosh(y?) | lp)°

This differential equation is exact since all of the terms on the left hand side are
known, and can be readily solved as

. h(y#) & sinh(y? .
[A J = [ ar 1c°s re) B emhGe) (“) . [A °] (VI.H-10)
0

B Esinh(yt') cosh(vyt) (&) (B*,)

which allows us to write the exact soluti'on; Equations (VI.G-4) and (VI.G-5), as
A(t) = A, cosh(y?) - & B, sinh(y1?)
+ cosh(yz) fot dt’ (a(t’) cosh(yt’) +6 b(z') sinh(yt')) (VI.H-11)

- 8 sinh(yz) fo' dt’ (b(t/) cosh(yt?') - a—(;—/l sinh(yt’)],

and

B(t) = B, cosh(yt) - —%9 sinh(yt)
N (VI.H-12)
+ cosh(y?) [ ar (b(t’) cosh(y?') + .‘!% sinh(yt’))

- % sinh(yz) fot dt’ (a(t') cosh(y?’) - & b(t’) sinh(y?)).

By using the properties of the hyperbolic functions for addition of arguments,
equations (VI.G.8) may be rewritten in a more compact form as

A(t) = A, cosh(yt) - 8 B, sinh(y?)
+ fot dt’ a(t') cosh(yt - yt') (VI.H-13)
-5 fo‘ dt’ b(t') sinh(yz - v¢),

and
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A
B(t) = B, cosh(y?) - ?° sinh(y?)
+ [1dt' b(r') cosh(yt - y¢) (VI.H-14)

_1 P 04\ i Y
6f0 dt’ a(t’) sinh(yt ~ yt'),

which clearly shows, even by inspection, that equations (VI.G-13) and (VI.G-14) are
the analytical solutions of equations (VI.G-1) and (VI.G-2). If a(t) and b(t), the
reinforcement rates are integrable with respect to the hyperbolic functions, equations
(VI.G-13) and (VI.G-14) are readily usable in calculations.

In his 1954 paper, Engel also presents a finite difference (numerical)
approximation to these equations which he uses to analyze the lwo Jima campaign.
This approximation is necessitated because force strengths and reinforcement rates
are known only for whole days - the structure of the reinforcement rates is not
known. As we shall address in the subsequent chapter on historical insights, this lack
of precise force structure information is one of the primary difficulties in historical
analysis of Lanchester’s Laws. As a prelude to that chapter, we here derive a pair of
finite difference approximate solutions.

The easiest way to form this approximation, rather than using equation (VI.G-3)
is to start with equation (VI.G-13) (assuming that we can carry equation (VI.G-14) in
parallel, but neglecting that derivation due to the cumbersome nature of the algebra,)

written as
A(t+Atr) = A, cosh(yt+yAt) - & B, sinh(yz+yAt)
+ ["% at’ a(t') cosh(yr + yAr - 1) (VI.H-15)
- fo”“ dt’ b(¢') sinh(yz + YAz - yt'),

which we expand to factor out terms in the hyperbolic functions of yAt. We next split
the integrals into two parts, one over the interval O to t, and the other over the
interval t to t+ At, and collect terms. This allows us to clearly recognize the two
terms that are just A(t) and B(t), equations (VI.G-13) and (VI.G-14), times cosh(yAt)
and sinh(yAt), respectively. If we replace these terms, this becomes
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A(t+At) = A(z) cosh(yAt) - 8 B(t) sinh(yAt)
+ f:’m dt’ a(t’) cosh(yt + yAr - 'Yt/) (VI.H-16)
-8 f:m dt’ b(t) sinh(yz + yAr - y¢').

The last analytical step is to change the variable of integration in the two integrals on
the left hand side of this equation to have limits between O and At. This gives

A(t+At) = A(t) cosh(yAt) - & B(t) sinh(yAz)
+ foA' dt a(t+1t') cosh(yAr - yt') (VI.H-17)
- 8 [t b(z+t') sinh(y Az - y?).

This equation has the form of equation (VI.G-13).

To this point, the solution is exact and analytic; it incorporates the finite
difference in time without approximation. To proceed however, we now introduce
two different approximations. The first of these is to apply the rectangular rule
(described in an earlier section,) to obtain the result

A(t+At) = A(r) cosh(yAtr) - & B(t) sinh(yAz) (VI.H-18)
+ a(t) cosh(yAt) - & b(z) sinh(yA¢r),

while the corresponding Blue force strength approximation is

B(t+At) = B(t) cosh(yAz) - Az) sinh(yAt)
5 (VI.H-19)

+ b(t) cosh(yA#) - “—(G‘l sinh(y As).

We note that we could equally well have applied the trapezoid rule to achieve a
somewhat more accurate approximation. That development is left as an exercise for
the student.

An alternate approximation (that used by Engel) is to treat a(t) and b(t) as
constant over the interval t to t+ At with values of the lower limit. This allows the
integrals to be performed analytically with the result,

A(t+At) = A(z) cosh(yAtr) - & B(t) sinh(yAz)
a(t) sinh(yAz)  b(z) (cosh(yAz) - 1) (VI.H-20)

+ .

Y p

The corresponding Blue force strength approximation is
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B(t+At) = B(¢) cosh(yAz) - i‘é’—) sinh(y A7)

, b(z) sinh(yAt) _ a() (cosh(yAt) - 1)_
Y o

(VI.H-21)

These equations are exactly the form presented by Engel except that there is only one
replacement rate in his problem.

The student will note that an alternate approach to Engel’s problem would have
been to use a bilinear approximation for the attrition rates, thus incorporating both
upper and lower limit values of these rates. This approximation would have been
slightly more accurate, but was not used. The technique used here does, however,

illustrate an analytical approximation approach - the approximation of functions under

the integral. We will use this technique again in later problems.

Although it is not necessarily clear at this point, the cosh(yAt)/sinh(yAt)
approximation is also more accurate than the use of the rectangular and trapezoid
rules. Derivation of this approximation arises from the repeated resubstitution of the
integral equations that was mentioned in an earlier section. We will revisit this
approximation in a later chapter when we consider explicitly timedependent attrition

rates.

1. Engel, J. H., "A Verification of Lanchester’s Law", Operations Research, 2 163, 1954.
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VIl. MATHEMATICAL THEORY III:
Solutions of the
Osipovian Attrition
Differential Equations

VIILA. Introduction

In Chapter ll, we briefly reviewed the attrition theory of Osipov, in which we
introduced the derivation of the (Lanchester-Osipov) Quadratic Law analytic solution,
the analysis of historical data, and the 3/2 attribution law. In this chapter, we return
to the study of Osipovian attrition by examining the other solutions of the Lanchester-
Osipov attrition differential equations. Osipov himself was primarily concerned with
the analysis of historical data, and dismissed the need to investigate the time solutions
of the force numbers.? Given the computational restrictions of the period, this is
readily understandable. In today’s period of easy numerical calculation by electronic
means, the time solutions are useful.

The general form of the attrition differential equations are:

44 _ _4 427 B, (VILA-1)
dt

and
4B _ _g prny, (VII.A-2)
dt

where: A, B are the number of units of the red, blue forces,

a, 3 are the attrition rate constants/functions of the two forces,

t is time, and

n is the attrition order.
We have seen previously that if n = 1, the resulting attrition differential equations
give rise to what we traditionally know as Lanchester’s Linear Law (and its associated
solutions), and if n = 2, the attrition differential equations give rise to what we
traditionally know as Lanchester’s Quadratic Law (and its associated solutions) which
we now know was also derived by Osipov and which was originally solved by him.
If we were scrupulously correct, we should likely refer to this law as the Lanchester-
Osipov Quadratic Law (using alphabetic order of the names) or even Chase-
Lanchester-Osipov, but tradition in the literature has accustomed us to thinking of the
law only as Lanchester’s. In the interest of brevity, this connection will be maintained

@ Although he did publish the time solutions of the quadratic equations.
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in this book. Unfortunately, this does not do justice to Osipov whose contribution is
at least comparable to Lanchester’s. Rather than restructure what we have come to
think of the nomenclature of attrition theory, we shall adopt a new nomenclature
based on the attrition order. If n has exactly integer values (normally one or two), we
will continue to use the existing Lanchester nomenclature. If it is non integer, we will
refer to the theory as Osipovian. If the value of the attrition order is unspecified, or
the result is general, we will use the term Lanchester-Osipov whenever the usage is
not too cumbersome or clarity is required. We will reserve reference to Chase or Fiske
to the equation forms which bear close resemblance to those they developed.

VII.B. The Lanchester-Osipov State Solution

The Lanchester - Osipov (or just LO for brevity’s sake), state solution may be derived
in the same manner as before. We may take the attrition differential equations,
Equations (VII.A-1) and (VII.A-2), and ratio then to form )

2,
dA _ e« A" B (VII.B-1)
dB B B> 4

rewrite the fraction on the right hand side as

-1
ddA _ o B (VII.B-2)

dB ﬁ An—1 !

and form the exact differential equation

B An—1 dA = « Bn—1 dB, R (V“B-3)

which we may solve by direct integration as

Llar-ag) -2 (" - B7). (VILB-4)

If we cancel the common denominators (which are just the attrition order), then
the LO state solution

B(A* - 45 ) =a (B" - By ). (VI1.B-5)

results. From a mathematical sense, we note that this integration is general and does

not depend on the attrition order as long as the attrition order is not equal to zero. A
state solution still exists if the attrition order is zero, but it has a different form. (We
shall consider the special case of zero attrition order in a later chapter.)
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The LO state solution is generally true for any nonzero value of the attrition
order. For integral values of the attrition order (normally one or two), this state
solution becomes what we normally think of as the Lanchester Linear and Quadratic
Law State Solutions, respectfully. If the attrition order has a value of 3/2, then this
state solution becomes the Osipov 3/2 Law State Solution.

VII.C. Time Solution of the Osipov Attrition Differential Equations.

In this section, the time solution of the Osipov attrition differential equations
is derived. In terms of our new nomenclature, this restricts the attrition order to take
on noninteger values. The techniques described in Chapter lil, especially the powerful
method of normal forms, do not apply because, in general, the required integrals do
not exist. This may easily be seen if we rewrite the Equation (VI1.B-5) state solution
in the form,

A= % pny B (VIL.C-1)
B B
where
A, = B Ay - « By, (VII.C-2)
is the general conclusion condition. Equation (VII.C-1) may be rewritten as

1
A= ( & pn, % ): _ (VII.C-3)

If we substitute this into the blue force attrition differential equation, Equation (VII.A-
1) we get

EEE

4B _ _g pen ( @ g, Ag) (VII.C-4)
dt B p )’ _

which may be difficult to solve even if the attrition order is an integer, fundamentally
being dependent on performing the B integration. For n = 1, the Linear Law case, and
n = 2, the Quadratic Law case, these integrals exist, as we have seen. For n general
in value (non-integer), this is not seem generally possible.

Instead of proceeding in this manner, we make note of the differential
properties of two functions of the force numbers. We define
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"+ a B, (VII.C-5)

which have derivatives

and df; dA dB
haca ) = An-1 aAa Bn-1 ab
g "RAT Gorme BT (VII.C-6)
=-2na P s
df, _ dA dB
2 a2t (VII.C-7)
= -HL*" fy.
Equation (VII.C-7) may be rewritten as
df n-1 i
2 =-(n-1)f,. (VIl.C-8)

dt

if we differentiate this equatioh again, and substitute Equation (VII.C-6) into it, we
get,

B 2 £ n-1 '

d:z -(n—1)d—f1-

dt dt
2n(n-1)a B fo.

(VI.C-9)

This nonlinear second order differential equation in f, is daunting, but is directly
solvable. We make the substitution

% = £(0) &', (VII.C-10)

which gives us a very complicated equation

Aoy [zcn “ )l -1) - 1] g""”-z[d{&f Hn - 1) g ff) (VIL.C-11)
=2n(@-1) vy 5(0) g,

where we have replace a 8 with y2. We rearrange this into
This still appears horribly difficult, but if we now select | to satisfy

1+2-1(-1)=0, (VII.C-13)
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2
In - 1) [I(n - 1) - 1] (%f) +Hn-1)¢g f;g (VII.C-12)

=2 (1 - 1) Y2 A0)" gl 021,

that is,
;=2 (VII.C-14)

this reduces to

2(:‘: fz—); (%")2 *2:' :—1-21 4 :-f?g =2n(n - 1) 2 (0% (VII.C-15)

We note that since we expectn < 2 as a rule, Equations (VII.C-10} will have the form

0
f(2) = Al > (VIL.C-16)

g(e)2™

so that g will increase with time. Recognizing this, we may comfortably rewrite
Equation (VI.C-15) in a somewhat simpler form,

dg¥ _ o _ d’g _ )2 o2 2-n -
"] @ -m g TE=n@ - nf R HOF. (G

and apply a series solution of the form

g(?) = }3 gt . (VII.C-18)
j=0 :

Since Equation (VII.C-17) contains terms of order g2, we must have two indices
of summation. Thus, on substitution of Equation (VI.C-18) into Equation (VII.C-17)

we get
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n Y G+ 1) (k+1) g, g,
j.k=0

-(2-n) ) (k+1)(k+2)g g,,t"*
j.k=0

=n (2 - N2y 1,002,

(VIL.C-19)

This equation is still daunting, but we can simplify it still further by a simple
trick - we note that the time t is always raised to the same power which
is the sum of the indices j and k. We may therefore redefine our double
summazions with a new index of summation | (different from the previous one
in this section!,) that is just the sum of j and k, and redefine one of the
other indices, say k, so that it now runs only over values from zero to I. The
student may wish to verify that by making this change of index, we neither
introduce nor eliminate any terms. If we make this change, Equation (VII.C-19)

becomes

g; t:kz.% n(l-k+1)(k+1)g_ s Ge.s
-(2-n)(k+1)(k+2)g._ 9.» (VIL.C-20)

=n (2 - n)? y? (02" .

We note that this equation has the happy property of having all time
dependence on the right hand side of the equation outside the second
summation. If we assume linear independence of the summation terms, we
may decompose Equation (VII.C-20) term by term, matching powers of time.

Before preceding to this however, it is useful to backtrack at this point
and determine the values of the first two terms in the g expansion. Clearly,
the zeroth index term is one from Equation (VII.C-10). Since this is the only

term in the g expansion that contributes to the value of g at t = O, this
assignment is necessary to assure that f, has the proper value at t = 0. The
first index term has a value given by Equation (VII.C-7), evaluated at t = O.

This action is just the application of the second (necessary) boundary
condition. Thus, the first two terms in the g expansion have values:

g =1,
2-n
2

f2(0)1-n f1(0) . (VIIC-21)

g, =
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ngl-2(2-n)gyg,=n(2-n?y2f,(072". (VIL.C-22)
We may now proceed to the decomposition of Equation (VII.C-20). For
| = 0, the decomposition has the simple form, which, since g, = 1, has the
simple form,
g, = n2-n ‘28' N) £,(0)272" (£,(0)2 - 4 2 1,(0)") . (VILC-23)

We note that the last term of Equation (VII.C-23) is just the state solution
in terms of f, and f,. Further, the constant left hand side of Equation (VII.C-
20) only contributes to the first, | = 0, decomposition term. Higher order in
| decomposition terms (I > 0), may be generally written as,

| 1-1

n
-k+1)(k +1 - k + 1) (k + 2
o - on "Zo ( + 1)k + 1) 90 Ghan '§ { ) (k +2) g, G., (VIL.C-24)
2 (1+1)(1+2) ’

where we have used g, = 1. This equation allows us to calculate the terms
of the g expansion, starting with g,, g;, and g,, in a bootstrap fashion.

VII.D Near Quadratic Behavior of the Osipov Time Solution

Clearly, with n = 2, the mathematics of the preceding section is
unnecessary, we may solve the attrition differential equations directly by the
method of normal forms. It is valuable, however, to examine the behavior of

our formalism when n = 2.

We may expand f,"*! about n = 2 by rewriting it as an exp'onential
and expanding, ’

fn—‘l _ e(n-‘l) In(f,)

2 ’
= In(f,) . (VIL.D-1)
=,y —>— (n-2).
j=0 L
The first order term is then just
f37 ' =f,[1+In(f,) (n-2)1, (VILD-2)

which has a first derivative
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dfy”'  df df
> 'dtzH+'"(f2”“'2”+"cﬁz'("_2)’ (VILD-3)

and a second derivative

d2ff™'  d2f df - d2f
2 2pdn=2 2% -2,

=—2[1+Inlf -2 —2
e e [1+In{f,) (n )]+(dt T e (VILD-4)

2n(n-1)1y:1,.

and associated second order differential equation.

This is a much more complicated (because of the In(f,) term,) non-linear
differential equation than we had before, but it is, in principle, solvable.
Because this solution presents great difficulty and adds little to our exposition
here that the formalism is extensible all the way to n = 2, we do not
present that solution here. Rest assured however, that the mathematics

continues to hold!

It is possible to form approximate solutions to this differential equation,
but we shall only indicate the approach here. Since the term In(f,) is relatively
small and changes slowly compared to f,, we can structure approximations
based on using the initial value of f,. These tend to be valid only for small
losses - the initial part of the engagement. In this case, Equation (Vil.D-4)

has exponential solutions with exponents @ given by

= Zn(n - 1)
v J (Zn - 3) + (5,00 (n-2) '~  (VILD-5)

" Solutions can then be constructed with these exponents.

VLE. The 3/2 Law

Osipov has noted that for forces larger than 75,000 in strength, the 3/2
law seems to agree better with historical data than does the Quadratic
Law. In this section, we shall examine the behavior of the Osipov time

solutions for n = 3/2.

For n = 3/2, Equation (VII.C-9) becomes
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1

2
d 2f, (VILE-1)
dt?

which has a solution that is an elliptic integral. Since the methodology
advanced in section C of this chapter is still applicable, we shall not
overwhelm the student with an exposition of elliptic integrals, leaving that to
inspection of other texts.

We shall examine the properties of the 3/2 Law in the next chapter
when we present calculations.

VIl F Duration of the Conflict.

One of the popular, and misused applications of attrition theory is to
calculate the time to battle's end based on battle to a conclusion. This is
especially true” in the method used here to solve the general Osipov attrition
differential equations. The f, function only goes to zero when both the red
and blue forces have zero strength - only in the draw case. Alternately, the
f, function goes to zero when either the red or the blue force has zero

strength.

Clearly, it should be possible to extract the time t when the g function
comes arbitrarily close to infinity (arbitrarily large). This value of time would
correspond to a conclusion time within the definition used to determine that
time. If the student has some inclination at this point that this is an entirely
arbitrary definition then that is the case. The complexity of extracting the
conclusion time from the g expansion (which incidentally, is no more difficult
than extracting inverse tanh's,) for an arbitrarily defined value of g associated
with some value of f, merely points up the lack of utility of the concept. The
concept of conclusion time has good mathematical meaning, if properly
defined in a mathematical sense. It does not appear to have good meaning
in the sense of the end of a battle.

Vil G Draw Solution.
The ideal solution to deal with is the true draw case - that of a
complete conclusion, A, = 0. In this case, the state solution reduces to
aB"=BA", (VIL.G-1)
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which we may substitute into the attrition differential equations, Equations
(VIILA-1) and (VH.A-2). This gives

A )
dA _ _q ¢ A3, (VIL.G-2)
dt

and

dB B 3-n
g8 - _Egsn, ]
” 5 (VILG-3)

¢=[£)F, (VILG-4)

for notational convenience. Since Equations (VII.G-2) and (VII.G-3) are now
homogeneous, they may be integrated directly and with some simple algebraic
manipulation, give solutions of the forms,

A _ . AO
== o (VILG-5)
(1+ad2-nAZ" )z

and

B,

B(tr) =

3 .
( 1 + %(2 _ n) B(;Z-n t) 2-n (VILG'G)

Note that the force strengths only become zero at infinite time. This, as we
now recognize, is characteristic of draw cases - they have infinite conclusion

times.

It is interesting to examine the asymptotic properties of these solutions
as n - 2. We may do this, for the A solution, Equation (VIL.G-5), by rewriting
it as

(1 +ad(2-n)AJ ")

Alt) = Ay e z : (VILG-T)
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which as n becomes close enough to 2 so that we may expand the logarithm
and only keep the first order term, has the form,

Alt) = A, e'“(g)%Aoz ot (VIL.G-8)

where we have explicitly written ¢. As n becomes exactly 2, Equation
(VII-G-8) becomes

Alt) = A e, (VIL.G-9)

which is the expected (desired) result.

Similar results can be obtained for the B, Equation (VII.G-6). This is left as -
an exercise. :

VH.H. Conclusion

In this chapter, we have presented a solution method for the general
Osipov- Lanchester attrition differential equations when both forces have the
same attrition order n. Before closing out the chapter however, a word of
warning is in order for the student who seeks to use the results of this
chapter in simulation - to get numbers. There is a potential numerical
instability in the form of the solution that needs accounting.

The recursion solution for the g function expansion contains a term
proportional to (n - 2). This term can become numerically unstable when n is
sufficiently close to 2 and recursion is made. Accordingly, care should be
taken in calculations to ensure that proper numerical techniques are used.
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VIIl. Osipovian Attrition
Ironman Analysis and Solution Forms

VIl A. Introduction

In this chapter we take up the analysis of Osipovian attrition using the
mathematical solutions developed in the previous chapter. As in Chapter V, we again
take up the pursuit of Ironman Analysis to bring some further understanding to
attrition mechanics. Additionally, we examine the nature of the solution by examining
specific. calculations, and give some attention to the nature of the attrition processes.

VIII.B. Osipov’s 3/2 Law Iron Man Analysis.

For the deterministic Ironman Analysis of Osipov’s 3/2 Law, we have the
differential equations

dA
A _, 73 (VIIl.B-1)
g " evA

and

4B _, (VIIl.B-2)

since we assume the Blue force to be comprised of one Ironman (who, by assumption;
cannot be attrited).

We may integrate Equation (VII.B-1) directly since it is an exact differential
equation, giving us the solution

A= J4, - %t (VIII.B-3)
VA = A - =

where the Blue force strength, by assumption; is one. It is more convenient to write
this equation in the form '

2 (\/A_o - ﬁ) =at, (VHi.B-4)
for analyzing the meaning of the attrition rate.
One natural measure of the attrition rate immediately presents itself: Let us

specify that t’ is the time required for the Blue force (of one unit) to reduce the Red
force strength from A, to A,/4. If we apply these conditions to equation (VIiI.B-4),
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force strength from A, to A,/4. If we apply these conditions to equation (VII.B-4), ‘
the result is

Ao =o' t/, (VIII.B-5)

or

(VII.B-6)

NE

that is, a’ is the square root of the initial Red force strength divided by the time that
it takes the Blue force (of one!) to reduce the Red force strength by 3/4™. This is a
mathematically natural way to define the attrition rate, but it is also a bit difficult to
accept on a military basis - surely no force, incapable of inflicting losses on the other
side, will aliow a battle to proceed to the point of loosing 3/4'™ of its strength except
under the most unusual of circumstances such as combat to a conclusion or where
A, is very small. This is surely contrary to anything Osipov would conceive of in view
of his insights into historical battles. Further, this definition strains the calculability
of the attrition rate - there are far too many attrition options to be resolved in one unit
. achieving this number of Kills.

) The student may, at this point, raise the question, "what of the Linear Law ‘
case?”, and that question is valid. In the Linear Law Ironman Analysis (Section V.B),

the attrition time 7 could have been defined as the period of time required to reduce

A, to e’ of its initial value. This however, is a reduction of 66% (2/3), which is

reasonably close to a 75% reduction. By assumption, the Linear Law commonly refers

to indirect fire® which implies that the Red force is incapab!2 of knowing directly of

its attrition effects on the Biue force. If, and we here assume that, Osipov’s 3/2 Law

may describe direct fire combat, then the Red force is aware of its alethality. Thus,

this degree of attrition (75 %) is not consistent wit.: the definition of an attrition time

for the Osipov 3/2 Law.

If instead, we advance the definition introduced for the Square Law, and used
throughout Chapter V, that t" is the time required to reduce the Red force strength
by one unit, then we may use equation (VIll.B-4) to write

® The Linear Law may also apply to direct fire when targets are hard to find. ‘
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2 /4, (1 - |1 - Al] —ra (VIII.B-7)
0

which if we expand the radical, assuming A, > 1, gives

a’ (VIIl.B-8)

1
‘/Z; t//’

which gives an attrition rate a" exactly A, times smaller than a’ andV'A, times smaller
that the square law attrition rate. While this proposed definition is better than the first
one, it is not satisfactory since it implies a rate of loss which is significantly less than
that seen in the Square Law. We further note that if t’ is linear in the individual
attrition times, that is,

1/
ot (VIIL.B-9)
4 ’

then a’ and a" differ by a factor of 2.

There is, of course, nothing inherently wrong with the suggestion of a different
time scale for Osipov’s 3/2 Law, even based on the assumption of common attrition
mechanisms between-the 3/2 and Square Laws. It is, however, an excessive
complication which we do not need to incorporate now because it implies some
discontinuity in assumptions between the Linear and Square Laws (since the 3/2 Law
lies between them in attrition order) which we cannot justify based on what we have
examined thus far. To resolve some of this question, we now turn to the general form
of Osipovian attrition.
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VIII.C. General Osipovian Ironman Analysis

For the case of general attrition order, the Red force lronman Analysis
differential equation is

- -q A2, (VIIL.C-1)
dt

which has solutions

AV A =gt (n - 1),

(VIll.C-2)
where n # 1.

If we again try the Square Law attrition time definition, that t" is the time
required to attrit one unit, then the attrition rate is defined by

n-2
"o_ 4o

(VII.C-3)
¢ !

which for the 3/2 Law gives

N -

o =B (vin.c-4)
¢ !

which is identical to Equation (VIII.B-6). For the Square Law, we get

1
o =

a1, (VIII.C-5)
t//

which is the definition. While this proposed definition does give consistency, we will
search farther along one more avenue of investigation before unconditionally adopting
it.

Let the attrition time 7 be the time required to attrit x units of the Red force
with the restriction that x is small so that we may retain the freedom to expand the
force strength terms. Thus

Ao - X.

If we substitute this into equation (VIII.C-2), we get
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Ay - (Ao - %y =a < (n-1). (VIIl.C-7)

which we again expand and form the equation

x A% =« 1. (VII.C-8)

If we let x = A 2", then @ = 7', which is Bonder’s equation. Now, 7 is the time
required to attrit A,2" of the Red force. For the Square Law this is just one unit!,
while for the 3/2 Law (and in general,) this time is force strength dependent. This
does not violate any of the assumptions that we have introduced so far, but it does
have the effect of introducing a degree of freedom which we must consider, that the
attrition time is dependent on the force strength!® Unfortunately, it seems to
contradict the results we derived in Chapter V. We will examine this in the next
section.

*  We do note in passing that if 7 is linear, then this result is equivalent to equation (VIII.B-8).
This result should not surprise the student since the assumptions used in forming the two equations
are mathematically equivalent.

Further, recall that for the Linear Law case, n = 1, we have lronman Solutions of the form
In(A,/A) = ar.
If 7 is the time that it takes to attrit the Red force to A, e, then this reduces to Bonder’s Equation.
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VIIL.D. Force Strength and Attrition

In the assumptions associated with the Linear and Square Laws, the attrition
form depends on whether the density of the force is a constant or varies, and that the
weapons may attrit any unit in the battle (within range of the weapons). Let us now
consider the consequences of these assumptions in greater detail.

Consider a force arranged in a rectangular order. The area occupied by the
force is described by dimensions of depth and width, d and w, respectively. The area
occupied by the unit, a, is just the product of these two. Let the unit be arranged
such that the average distance between elements along the depth of the unit is d, and
along the width is w,. Then the number of elements (units) in the area is

A=4Vv (VII1.D-1)
4 we
If we introduce the ratios
=9 (VIIl.D-2)
w
and
- £l (VIlL.D-3)
w

we may solve equation (VIII.D-1) for the number of units along the width (or depth)
of the formation as

\ .
4=21 (VIIl.D-4)
We 1o
or
feaen (VIll.D-5)

w -_—
we

Alternately, we may write the perimeter of the formation as
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p=2(wd VIII.D-6
—2w(1+5)-2402S) (VIll-B-6)
I
which is related to the area by
2
a=_Pf (VII1.D-7)
4(1+f)
Since the density of the force is p = Aa, we may write the force strength as
2
A-_0P°f (VIII.D-8)
4(1+f) |

If we now use the proposed definition of attrition time advanced in the previous
section, that r was the time required to attrit A,2" units, then from equation (VII.D-8)
we may write

n-1
ne =( pp?'fa) , (VIII.D-9)
4(1+f)

and now explore what this fraction means in terms of the attrition order. 1fn = 3/2,
then 2 - n = 1/2, and the result is

(VIiIl.D-10)

[ LYY

A

=EVp p,

where § is a constant. If p is a constant, then this quantity varies only with the
perimeter of the formation. This implies that attrition may only occur along the
perimeter of the formation. ]

If p is a variable, then this quantity varies with the square root of the force
strength, which we see from equation (VIII.D-5) is related to the number of units
along the width (or depth, and thereby the perimeter of the formation.) This implies
that attrition may only occur along the perimeter of the formation.

Notice that under the assumptions of either constant or variable density, which
for area fire, give rise to both Linear and Quadratic Laws, the Osipov 3/2 Law
develops if attrition is limited to the edge of the formation.

For direct fire, if we assume targets are hard to find, then the Linear Law again
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results, but if the targets are hard to kill, and the formation has a basis where f = f,,
then

N, = y4. (VIIl.D-11)

For direct fire, we may now see that the attrition rate may be defined by Bonder’s
equation when 7 is the time to kill one rank of the formation or by the formalism
developed in Chapter V, assuming linear time.

During most of history, battles were, ideally, fought between units arranged in
rectangular formations of rank and file. This is true of the era of most of the battles
which Osipov considered. Thus, Osipov’s 3/2 Law may be viewed as representing
combat which occurred in this manner - between rank and file formations with
attrition limited to the front (or sides) of the formation.

This interpretation is acceptable for direct fire weapons against this type of
formation. Troops behind the first rank are hidden from view and fire by the ranks in
front of them. Since direct fire in that period was usually aimed at the formation as
a whole rather than at individual troops,’ the rearward troops were shielded and
attrition occurred primarily at the perimeter of the formation.

Equally clearly, however, this interpretation cannot be simply applied to indirect
fire weapons which have an area coverage. While fire which landed to one side of the
formation would tend to have much the same effect as direct fire, this will not explain
fire which lands in the formation. Rather than postulate some strange type of attrition
mechanism, let us write the force strength as

A=p,dp,w, (VIII.D-12)

where p, and p,, are just the inverses of d, and w,. Both of these quantities are
proportional to VVA because of the assumption of a rank and file basis. Let us now
assume that the linear density along the width of the formation is constant (a
constant front to the enemy). Then, p,, is a constant, but p, is not. Rather, it is
proportional to VVA. Changes in the structure of the force strength can then only
occur along the depth. In other words, the Osipov 3/2 Law describes area fire against
a formation when the width, depth, or perimeter of the formation is constant.

This now leads us to an examination of the general form of Osipovian attrition.
For area fire, a constant areal force density results in the Linear Law, a constant linear
force density results in Osipov’s 3/2 law, and a completely variable density results in
the Square Law. Thus, the quantity (2-n) represents the fractional power of the area
that the density of the unit is held constant over. In the sense of fractals,??

c=2(2-n), (VIIl.D-13)
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o is the fractal dimension of force density under area fire. (Forn = 1, 0 = 2, which
has dimensions of length squared, or area. Forn = 3/2, o = 1, which is a dimension
of length, while for n = 2, 0 = 0, which has no dimension - a point.)

For direct fire, we have sketched that the attrition order may represent a
tradeoff between acquisition time and killing time. When the units are widely enough
spread that all units (in theory), can be seen and shot at, the Linear and Quadratic
Laws result when one or the other of these is the most time consuming. For the 3/2
Law, the two processes occur in the same manner, since units arranged across the
battlefield must only be searched for in elevation, but not in azimuth (which again
goes as VA) and attrition occurs only on the edges of the formation. Does the
attrition order reflect some variation in the importance magnitude of the acquisition
and kill times? The answer is no! The 3/2 Law equivalence is an accident which is a
feature of the way that the units are arranged and attrition occurs. In direct fire
attrition dominated by kill time, the attrition order n is a complex function of the force
formation and where in that formation attrition can occur. In its simplest terms,

o/ =2(n-1), (VIII.D-14)

is the fractional dimension over which attrition can occur.

For the Linear Law case, n = 1, 0’ = 0, which we may interpret as point
attrition against those points (individual elements) that have been acquired. For the
3/2 Law case, n = 3/2, 0’ = 1, which we interpret as attrition along a line (the
width, depth, or perimeter of the formation, as appropriate.) For the Square Law, n
= 2, 0’ = 2, which we interpret as attrition over the entire area of the formation.

One of the questions that we have not addressed here is the way direct fire
occurs in rank and file formations. While we have shown that keeping the number of
troops in the front rank constant by decreasing (selectively) the number of files (or
visa versa) keeps the attrition proportional to VVA, we have not made the argument
that since only one rank in a formation may safely and effectively fire at once, attrition
is also proportional to VB and not to B. This argument leads to a different pair of
attrition differential equations which have a linear state solution. We will discuss this
pair of attrition differential equations in a later chapter on alternative attrition
differential equations. By training and doctrine variations, several ranks may fire at
once although this reduces the firing rate (but not necessarily the loss rate.)

1. von Pivka, Otto, Armies of the Napoleonic Era, Tapinger Publishing Co., New York, 1979.
2. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

3. Schroder, Manfred, Fractals, Chaos, Power Laws, W. H. Freeman and Company, New York,
1991.
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VIII.E. Assumptions of the Osipov 3/2 Law

In this section, we present the assumptions associated with Osipov’s 3/2 Law.
Some of these have been discussed or developed in preceding sections. 'As we have
described earlier, most of these assumptions are associated with rank and file
formations of compact density used in warfare during the approximate period from
(before) Alexander the Great (the Phalanx) to roughly World War l.! These formations,
and Osipov’s 3/2 Law seem especially applicable during the early period of gunpowder
warfare before rate of fire became high enough to force increased dispersal which in
turn forced better training and shifted the influence of the acquisition process.

Quite simply, when rate and density of fire (because of technological
improvements) made attrition too fast for a rank and file formation tc survive
effectively (Pickett’s Charge at the Battle of Gettysburg comes to mind as an
example),?® the survival answer was to reduce the density of the formation and to
depart from the rigid formation to take advantage of terrain for protection at the
individual level. This dispersal in turn required changes in the training of the troops
to operate more independently (to do target acquisition and shoot without the direct
control of their commissioned and non-commissioned officers - a great liberalization
of armies which leveled the class structure of the army, ended the nobility - commons
split in the officer - enlisted ranks with profound political implications, and increased
the officer : enlisted ratio to maintain some control.) This greater dispersal and
independence in turn changed the very nature of attrition. Before, acquisition and
killing were separate processes. Once acquisition ended, killing began and continued
until stopped. Fire was primarily directed against multi-element formations rather
than against individual elements. Thus, attrition mechanics may be viewed as shifting
from 3/2 Law to Linear or Quadratic Law depending on the relative temporal
importance of acquisition and engagement..

This shift may, however, be also viewed as a matter of scale as well. Battles
after the American Civil War continued to this day to be fought with lines between the
two forces. Despite an increase in depth of weapons’ effective carry, which changed
the dimensionality of attrition at the local level from a line (n = 3/2)toanarea(n =
1 orn = 2,) battles continue to occur at interfaces between the two forces. Even
today, with contemporary concepts of non-linear battlefields, independently operating
Corps, and the echelonment of forces, combat still has a component that occurs along
the edges of its forces’ formations. The bankruptcy of the Osipovian 3/2 Law should,
accordingly, not be too rapidly heralded, lest it be like Mark Twain’s death.

We may now state the assumptions, in the manner of Chapter 1V, that we may
relate to the Osipov 3/2 Law:
1.) The two forces A (for amber or red) and B (for blue)
are engaged in combat.
2.) The units of the two forces are within weapons
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range of units of the other side.
3.) The attrition rates are known and constant.
4a.) Each unitis aware of the general location of enemy
units but is unaware of the effect of fire.
5a.) Fire is uniformly distributed over the area occupied
by enemy units.
6a.) The occupied front, or depth, or perimeter density of
units remains constant, units redisperse within the area to
keep this dimension constant.

or
4b.) Each unitis aware of the specific location of enemy
units and the effect of fire is known.
5b.) Fire from surviving units is uniformly distributed
against enemy units.
6b.) The area occupied by surviving units may contract to
maintain a constant linear density of units along front,
depth, or perimeter.

We note immediately that assumptions 1 - 3 are identical to those that we have
stated before in Chapter IV, except that we have modified assumption 2 to be
consistent with our findings in that chapter about the limitations of weapons’ range.
Assumptions 4a - 6a are those for area fire, modified for the restriction that a
constant linear density of formation is maintained. Assumptions 4b - 6b are those for
point fire, again modified for the restriction that a constant linear density is
maintained. Note the "may contract" in assumption 6b. If the formation maintains
a constant frontal or side density (along ranks or files,) then the formation must
contract. If a constant perimeter density is maintained, then the formation cannot
contract although the density may decrease to keep a rectangular array of troops or
a hole may appear in the center of the formation if the density along the perimeter is
maintained (this is the tactic of forming a square so often used by the British in the
Napoleonic Wars.)
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VIILF.  Solutions of Osipov’s 3/2 Law

We may now turn our attention to the form of time solutions of the Osipov 3/2
Law by examining some particular solutions. The calculation of attrition rates will use
the equations derived in Section C of this chapter; calculations of the time solutions
will use the numerical technique outlined in the last section of the preceding chapter
to avoid the singularity in the analytical solution. For simplicity, we shall limit
ourselves to formations which are square (approximately) both in terms of distance
between troops within the formation and in terms of the arrangement of the
formation. As in previous examples, we will use an initial red force strength, A,, of
100 units, and an initial Blue force strength, B,, of 200.

Osipov 3/2 Time Solutions
Base Case

Figure (VII.F.1)

As in previous examples, we shall take the attrition time for one kill {the Square
Law attrition time) to be the inverse of the product of rate of fire, r,, and probability
of kill, p,. As an approximation, since we have not laid any basis for the attrition
mechanism in a rank and file formation (again deferred to a later chapter on attrition
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rate theory,) we will assume that attrition occurs linearly. Thus, the attrition time for
VA, is just that factor times the attrition time for a single unit. For the base case, we
take r, = 4 rounds per time period, and p, = 0.3 for both forces. We ignore the
impact of acquisition time by assuming it to be small. For these parameters, the base
case is shown in Figure (VIIl.F.1).

As we have noted in Chapter IV, the force power of the two sides can be
modified by either changing the attrition rates or the initial force strengths. In the
linear law case, we saw that a change of equal magnitude of either attrition rate or
initial force strength had the same effect on the outcome of the engagement, while
for the square law case, we saw that it was necessary to increase the attrition rate
by a factor equal to the square of the factor of increase of the initial force strength
to have the same effect. This is merely the Principle of Concentration, and it demon-
strated the effect of technology on the outcome of the engagement. In the Osipov
3/2 Law case, we would expect a situation intermediary between these two results
just from the form of the state solution.

Osipov 3/2 Law Time Solutions
Doubled Blue Rate of Fire

OO =0T

Te=0O 30 ~~(

Figure (VIL.F.2)
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If we examine the effect of changing the attrition rates, we see that for a
‘ doubling of the Blue attrition rate (by doubling either r; or p,,) that the conclusion is
indeed accelerated. This is shown in Figure (VIII.F.2). If we double both the rate of
fire and the probability of kill, the conclusion is accelerated even more. This is shown
in Figure (VIII.F.3). Note that in these succeeding cases, the losses for the Blue force
decrease slightly and approximately linearly (a result of the initial choice of parame-
ters,) with increase in attrition rate.

Osipov 3/2 Law Time Solutions
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Figure (VIL.F.3)




Osipov 3/2 Law Time Solutions
Doubled Blue Force Strength

OO0 —~0 ™M

S=~0Q OO0 ~~0N

Figure (VII.F.4)

If we double (Figure (VIII.F.4)) and halve (Figure (VIII.F.5)) the initial Blue force
strength, a much more dramatic change occurs in the form of the engagement. When
we double the initial Blue force strength, the engagement concludes in approximately
the same period of time as doubling the Blue attrition rate, and Blue losses are
approximately the same. If we halve the Blue initial force strength, however, we find
the engagement lasting approximately as long as the base case, but losses to the Blue
force increase dramatically while losses to the Red force decrease. This is, of course,
the draw case. '
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o Osipov 3/2 Law Time Solutions
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Figure (VII.F.5)
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VIIL.G. Comparison of the Square Law and Osipov’s 3/2 Law

One of the interesting questions which comes up (in the next chapter for
instance,) is a comparison of the Square and 3/2 Laws. The state solutions of the
two laws are different, but the attrition rates are also. To examine this question we
calculate the particular solutions for the square and 3/2 laws using the parameters of
the preceeding section and the appropriate time solutions. This is shown in Figure
(VIIl.G.1). The student should keep in mind while examining this figure that while the
initial force strengths, and the rates of fire and probabilities of kill are identical for the
two calculations, the attrition rates are decidedly different. The square law attrition
rates are = r, p,, while the 3/2 law attrition rates are = r, p,/V'A,. Thus the loss rate
for the square law is = r, p, B, while the loss rate for the 3/2 law is = r, pVA / VA,
B. Since during the initial stages of the engagement A = A,, we should expect little
difference between the two solutions, while for longer time, we should expect that
the 3/2 law solution will decrease slower than the square law solution. This is exactly
what is shown in the figure.

The short time result is the more interesting of the two from a perspective of exam-
ining the historical data. Since most battles result in few casualties, it will be difficult
to tell the difference between the square and 3/2 laws. Only by examining the
correlation of the attrition rates with initial force strengths can we tell the difference
between the two solutions.

VIil.H. Conclusion

In the Dawn of the Fourth Age: Aircraft in Warfare, Lanchester [,1916] makes
the argument that ancient warfare was typified by the Linear Law. As a result of our
investigations into the Ironman Analysis of General and 3/2 Osipovian Attrition, we
are now in a position to hypothesize about the reasons for this.

If we postulate that the armies of the ancient period were drawn up in a line,
we may make a comparison with the rank and file formation. From a mathematical
standpoint, the line formation is a rank and file formation comprised of a single file.
The depth of the formation is kept constant. From what we have described, this
would lead us to expect the attrition to proceed according to Osipov’s 3/2 Law.

This is not the case because the density of units along the front rank (the line)
is not proportional to V'A, but to A since the formation is always only one rank deep
and the density of units in the line are either kept constant (and holes in the line are
allowed to form,) or allowed to vary and thus the soldier - soldier ratio in contact
changes. (The latter shouid shift to Square Law except that the holes allow the
enemy to either pass through the line or redeploy and this is probably avoided.) Thus
we may hypothesize that warfare in line gives rise to Linear Law attrition.
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IX. HISTORICAL PERSPECTIVES

IX.A. Introduction

One of the fundamental problems presented to the scientific study of attrition
is the difficulty in acquiring data on the phenomena. First of all, experiments cannot
be conducted - the very nature of war precludes deliberate scientific investigation on
moral, ethical, philosophical and financial grounds. Numerous attempts have been
made to simulate war in the form of training and test exercises but these have been
flavored by the unrealities of referees, umpires, and rules, and the difficulty of
gathering data in a meaningful manner. Recent efforts in analog combat simulation
in this country, such as the National Training Center and the DARPA SIMNET Program
offer some greater promise although, as Osipov would have possibly asserted, these
simulations are primarily oriented to the teaching of military principles. Still even
these simulations are flawed by the assumptions built into their underlying models.

This leaves, of course, historical information. Data on the battles of the past
are difficult to find and different sources of these data may contradict each other.
Even the barest minimum of data is available only for very few battles. As a
minimum, four data are needed for each battle - the initial and final force strength for
each of the two sides. A fifth datum, the duration of the battle, is hard to find in any
precise terms. For extended (many day) battles, force strength as a function of time
would be exceedingly valuable, but this type of data has been found for only a few
battles.

Despite this lack, there have been several previous historical analyses. The first
of these, recently rediscovered, was that of Osipov.! Other analyses include the
Battle of lwo Jima of World War 11,2 and the Inchon-Seoul campaign of the Korean-
Chinese-American War (or Korean Police Action as it is often called in the United
States).® We will review several such analyses in Section B.

The most elaborate of these appears to be that of Dupuy in the development
of the Quantified Judgement Mode! (QJM),* but since most of that data base has not
been submitted to open scientific scrutiny, the extent of the data base and the validity
of the QJM remain unknown. (This last statement should not be construed as
criticism of COL Trevor Dupuy and his co-workers. The QJM and its associated data
base at the History Evaluation Research Organization (HERO) are financial ventures in
the finest American tradition. They exist as profit makers and cannot be thereby
expected to the part of the open scientific literature. Useful portions of the QJM and
the database which have appeared in unclassified part may be used here as applicable
and properly cited.)




As part of the analyses in this chapter, five primary sources have been used in
compiling some short (unfortunately) databases of battle data. In addition to the data
of the preceding section, Osipov’s data,’ and some data on World War | battles in
Dupuy’s Numbers, Predictions and War,? these compendia of warfare data were
found: Eggenberger’s An Encyclopedia of Battles,® describing 1,560 battles, Lafflin’s
Brassey'’s Battles covering some 7,000 battles,® and Livermore’s Numbers and Losses
in the Civil War in America 1861-65.” The data sets were gathered from each of
these sources. There is some overlap of these data sets - that is, common battles.
The force strengths enumerated by the authors/editors of these sources have been
accepted without question. No resolution of conflicting numbers cited has been
attempted. One special data base incorporating short battles (=< 1 day in duration) for
~ which fairly exact durations are cited (in minutes or hours) has been compiled to

permit some superficial analysis of the time dependence of the battles. Another
special data base has been constructed for battles that proceeded to, or nearly to,
conclusions. These battles are exceedingly rare, but do exist.

The author of this work makes no pretense of being an historian. The
assumption has been made that the collectors of these data are historians of sufficient
credentials that their compendia may be used to gain insight. The philosophical
approach taken is essentially that originally espoused by Osipov, that in the aggregate,
the historical data can give insight into the attrition phenomena. The student is
therefore challenged to accept the contents of this chapter with care and deliberation;
more so than much of the rest of this work which has a technical foundation. As we
shall see in the next section, the previous Lanchester analyses of historical data have
not strongly supported the Lanchester attrition theory. Indeed, it has only been
recently that Lanchester theory has been conditionally accepted by historians.®

IX.B. Previous Historical Analyses. |

The open literature (I suspect now that the Soviet Union has dissolved, and
their military analysis is more available to us, we shall find similar analyses on their
parts) contains two historical Lanchestrian analyses of heroic form, analyses of
individual battles. | characterize these analyses as heroic because of the difficulty of
acquiring periodic (usually daily or hourly) strength figures for both sides. This is a far
cry from the minimum four (initial and final) strengths that is our fundamental criterion
for the data bases of the following sections.

Perhaps it is instructive that both of these battles/campaigns: lwo Jima and
Inchon-Seoul; are twentieth century so that record keeping has become a regular
staff/historian activity. Perhaps the fact that one side involves Americans with their
business-like approach to war transcends the geographic availability of the records.
Nonetheless, the fact remains that these two analyses are cornerstones of quantita-
tive military science, of the physics of war.




The Battle of lwo Jima occurred late in the Second World War (Pacific Theater).
The island of Iwo Jima, an 8 square mile, triangular shaped rock in the Bonine group
was viewed as a threat to bomber operations from Saipan against the Japanese
mainland. its threat value was mirrored by its desirability as a forward air base®.

The invasion, conducted from 19 February through 24 March of 1945 by the
Fifth Marine Amphibious Corps (consisting of the 3", 4", and 5™ Division) MG Harry
Schmidt commanding, and supported by the U.S. Fifth Fleet, was a classic 2-up, 1-
back invasion which resulted in a successful occupation of the island by 11 March.

The Battle of Iwo Jima was a conclusive battle in the sense that the Japanese
forces were completely (?) destroyed. (We will discuss conclusive battles in a
subsequent chapter.) Although Japanese organized fighting was considered to have
concluded on 16 March, by 11 March, their forces had been contained in two small
coastal regions. In his analysis, Engel was able to obtain detailed data on American
force strengths (arrivals and casualties) on a daily basis, and the duration of the
different phases of the battle. He also knew the initial and final (presumed zero)
strengths of the Japanese force strengths and that they were neither reinforced nor
evacuated. :

Table IX.B.1 American Force Strength Arrival Times
L.}

Day of Battle U.S. Force Strength Increments
0 54000
1 0]
2 6000
3 0
4 0]
5 13000
6 0]

The arrival times of American forces is given in Table IX.B.1




The battle lasted for 36 days and concluded with a total of 20,800 American
casualties and 4,590 dead. The initial Japanese force strength was 21,500 (Depuy
and Dupuy report 22,000).

Both Engel and Busse make the assumption that the Lanchester Quadratic
attrition differential equations with reinforcements (on one side,) are applicable. No
consideration is made of any attrition order other than two. Both forces are
approximated as homogeneous. The relevant equations are thus

dA _ _4J +a, (IX.B-1)
dt
and
a5 _ -BA. (IX.B-2)
dt
where: A(t), J(t) are the effective American and Japanese force strengths,

a, B are the attrition rates, and
a(t) is the American arrival rate.

The solution of these equations has already been described in Chapter VI.H.
Because data are available only on a daily basis, a numerical approximation (finite
difference) was necessary. Since the Japanese received no reinforcements, the
relevant (approximate) force strength solutions may be written from equations (VI.H-

20) and (VI. H-21) as

A(t+At) = A(r) cosh(yAz) - & B(t) sinh(yAt)
, a(z) sinh(yA¢) (1X.B-3)

Y

and

J(t+At) = J(t) cosh(yAtr) - A—é’—) sinh(y Ar)

_a(t) (cosh(yAte) - 1)_
o

(IX.B-4)

The parameters y and ¢ are (again) defined in the usual manner.

The attrition rates for the entirety of the battle and the campaign were
estimated by integrating Equations (IX.B-1) and (IX.B-2) numerically over the entire
duration as :



T

A(x) - do = -a X B(e) + X ale), (1X.B-5)
0 0

and

B(<) - B, ~ -B z;jA(t/), (IX.B-6)

where 7 is the duration of the battle/campaign, and all sums run fromt" = Otot' =
7. The attrition rates are thus,

T

Ay - A(7) + ) a(t))

a = 0 , (1X.B-7)
Y B(r)
0
and
B - B, - B(t)
iA( ) ' (IX.B-8)
t
0

The attrition rates are thus averaged over the entire battle - it assumes the attrition
pace of the battle is constant. While the student may view this as a strong and
possible enormous assumption, reflection should renewal that this is almost a forced
assumption. Given the nature of the data available and the conclusions we have made
thus far in Lanchester attrition theory, the assumption of constant attrition rate is
logical and natural.

Since the data do not include daily Japanese force strengths, J(t) can only be
calculated by recourse to the same attrition differential equations. There are no actual
daily Japanese force strengths for comparison. There are actual daily American force
strengths available (calculable from daily arrival and casualty data for comparison
although Engel does not explicitly include these in his article.)

Since Engel already had the actual daily American force strengths, he could
examine the estimated daily American force strengths with the actual numbers even
though he did not have the same detailed data on the Japanese. This comparison
constitutes a strong test of Lanchester attrition theory with its fundamental
assumption of constant attrition rate.
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Needless to say, the comparison was made, and Engel found very close
agreement with the actual data. Admittedly, there are daily fluctuations - differences
between the actual and numerically estimated force strengths, but these differences
were small percentages. The key point is not the attrition rates were assumed
constant, but that the battle was simulated in a cumulative manner dictated by
Lanchester attrition theory. This cummulation process tends to accumulate all the
errors, inaccuracies, and differences. Thus, the simulation of the n day of combat
carries with it all of the errors and differences that the model has generated on all of

the previous n-1 days of combat.

Acmittedly, we would expect some of these errors and differences to cancel,
but the degree of consistent agreement that Engel found is a telling demonstration of
the validity of Lanchester attrition theory. Clearly, this analysis is a strong argument
that the Battle of lwo Jima, to the degree that we have descriptive actual data, is
described by Lanchester attrition theory.

As a final note, Engel notes that there are other models that one could assume
to analyze these data, and that these models could also have good agreement with
the data, the model that he presents here is the simplest of these. If we place our
trust in Occam’s Razar, then this simplest of models is the valid one.

Before we proceed to the next analysis, it seems worthwhile to comment on
the assumption of constant attrition rates. Recall that Engel did not have detailed data
on the daily Japanese force strengths, only their initial and final force strengths. If he
had been able to get these data, then he could have used daily (rather than battle)
averaged force strengths and have improved the agreement between actual and
estimated force strengths. | will contend that while this may have reduced the
difference between actual data estimates, it would only have clouded his actual
contribution. Engel used the framework of Lanchester attrition theory to perform this
analysis. The agreement of calculation with actual data constitutes reasonable
demonstration of the applicability of the model.

Obviously, the data analysis weakness of Engel’s analysis is the lack of detailed
Japanese daily force strengths. The second analysis that we describe here, of the
Inchon-Seoul Campaign reported by Busse, set out to address tiiat very deficiency by
using estimated enemy daily casualties (force strength) derived from intelligence.

The Inchon-Seoul campaign, 15-26 September 1950, began with the
amphibious launching of the American X Corps (1% Marine Division, 7" Infantry
Division), MG Edward L. Almond commanding, at Inchon, Korea, on the Yellow Sea,
and culminated with liberation of Seoul. This daring campaign, began by an
amphibious landing like the lwo Jima battle, enabled General Douglas MacArthur to
regain the initiative, destroy the North Korean Army, and advance north to the Yellow
River until the Chinese counteroffensive begun on 25 November.
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The basic data for Busse’s analysis are given in Table (IX.B2).

Table IX.B.2. Inchon-Seoul Force Strengths and Reinforcements
A

Day Marine Force North Korean North Korean
Strength Reinforcements Force Strength
0 25040 0 22150
1 24844 0 21350
2 24818 0 20500
3 24742 3000 22750
4 24640 500 22600
5 24568 230 22100
6 24421 6500 27675
-7 24190 0] 25975
8 24025 0 24375
9 23882 2000 25305
10 23593 0 24290
11 23317 0 22390
12 23114 3500 24640
13 22925 0 23250
14 22882 0 22710
15 22813 0 22100
16 22752 2000 23465
17 22733 5000 28265
18 22636 0 27835
19 22598 0 26930

The relevant attrition differential equations are
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4dK _ -BA + k(?), (1X.B-9) ‘
dt
and
a4 | -ak,
dt
where: A(t), K(t) are the American, (North) Korean force strength,

a,B are (again) the attrition rates, and

k(t) is the (North) Korean reinforcement rate.
Again in this case, only one side receives reinforcements, and since the data are daily
in nature, we may write the numerical approximations for the force strength as

A(t+At) = A(t)cosh(yAtr) - dK(z)sinh(yAt)

- K1) cosh(yar) - 1), (IX.B-11)
p
and
K(z+Az) = K(r)cosh(yAt) - %sinh(ym)
S . kt)sinh(y A1) (IX.B-12) ‘

Y

from Equations (VI. H-20) and (VI. H-21). The parameters y and ¢ are (again) defined
in the usual manner.

Busse, like Engel, assumes a campaign averaged attrition rates. Since he has
actual daily force strengths for both sides, Busse may calculate both of his attrition
- rates directly from numeric integration of the attrition differential equations.

Since the values of @ anc 3 are small compared to At, Busse approximates the
cosh and sinh with one term Taylor series so that Equations (X.B-11) and (X.B-12)
become

A(t+At) = A(r) - aK(2) Az, (IX.B-13)

and
K(t+At) = K(z) - BA(r)Ar + k() Azx. (IX.B-14)



The results of the calculations are shown in Figures (IX.B.1) - (IX.B.2). We note
good agreement during the early part of the campaign, but decreasing agreement as
the campaign progresses. This is to be expected due to the accumulation of errors in
the method of numerical integration, and the approximation of constant attrition rates.

Busse did not consider his analysis to be a general validation of Lanchester
theory because he had to use a finite difference form of the solution. This is a strong
point, but it is not compromising. The finite difference form is derived from the
Lanchester Theory and thereby partakes of its assumptions and limitations. No
mathematical theory may be applied to real data without approximation. Thus, the
results of both Engel and Busse, while not conclusive, must be considered to support
the applicability of Lanchester attrition theory.

IX.C. Previous Historical Analyses. I

As we earlier stated, there have been several other analyses of historical data
in terms of Lanchester theory. If, for the moment, we exclude Osipov’s analysis, and
the analysis of the preceding section, we find two analyses, both cited in Dupuy’s
Numbers, Predictions, and Wars. These analyses are due to Dr. Daniel A. Williard,
and Janice B. Fain. These analyses found that the attrition order of historical battles
was approximately 2.5. In terms of the attrition differential equations, these analyses
indicate a form of

a2 .. % . (IX.C-1)

which would lead us to believe that the rate of loss is inversely proportional to the
square root of the force strength - the stronger a force the fewer casualties it takes.
This result is used by Dupuy to argue the invalidity of Lanchester’s theory. We note
" in passing that Equation (IX.C-1) is an Osipov type of attrition differential equation and
that we can and do have an explicit time solution of this type of (paired) equation.
We further note that we might subject the data to an Osipov type analysis for an
attrition order of 5/2 and find good agreement - we will defer such considerations for
the moment.

The data in Williard’s paper and the first Fain paper are not available for this
work because of their limited nature (we restrict ourselves to open literature sources).
The second Fain paper is, however, openly available and we may examine it to gain
some insight into that analysis. The data used in this study were extracted from
Bodart which was not available to this author, and the report does not exhaustively
catalog the battles in Fain’s data base (approximately 1100 battles). For our
calculations here, we substitute other data bases drawn from other sources. We may
only assume that they are similar.
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The analyses of Williard and Fain were based on the idea of performing linear
regression of what is essentially the state solution. (We translate this method into our .
own notation here for consistency sake). The Lanchester-Osipov state solution is

B (A4 - A™) = « (B; - B"). (1X.C-2)
We may rewrite this as
gl1-A)-2g1-2 ) (IX.C-3)
Ag p B}

As Osipov noted, and reiterated by Fain, most battles end when losses are still small
(20-30%). It is therefore convenient to rewrite the final numbers using the loss
functions introduced by Osipov. In those terms

A= Ao -a
IX.C-4
B = Bo - b, ( )

where a,b are the losses of the red, blue forces.

We may write Equation (IX.C-3) as .
o, n n
Alr-[1-2|=2pl1-|1-L]| (IX.C-5)
4y p B,
and since a/A,, b/B, are small compared to 1, we may write
Ay a = % B b, (IX.C-6)

after cancelling a common factor of n. If we take the logarithm of the equation, we
get

(n-1)In(4y) + In(a) = In(%) + (n-1)In(By) + In(d), (IX.C-7)

which we may rearrange as
which we immediately see has the form of a straught line
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In(%) - |n(-"’3£) + (n-1) In(%:], (1X.C-8)

Y=c +dx,

where c is the intercept and d is the slope of the line. If we curve fit an historic data
base, where Y = In{a/b), and x = In(B,/A,) we can expect to find the fitted slope to
be related to the attrition order.

From the sources available to us a series of data bases were constructed. Even
taken together, these data bases contain fewer total battles than does Fain’s data
base. These data bases consist of the following:*® ‘

A data base which includes those battles with the requisite five data per battle,
with battle duration expressed in days. These battles (108 in number) were drawn
from Laffin and Eggenberger. Most of these battles were one day in duration - few are
of more than 6 days in duration. These data are presented in Table (D.1) and will be
referred to as Nominal Length Battles.

The second data base was drawn from Livermore. Duration was calculated in
days based on the inclusive dates of the battle. This data base consists of 49 battles,
and is presented in Table (D.2), and will be referred to as Civil War Battles

The next data base is drawn directly from Osipov. It does not include duration.
This data base is given in Table (D.3), and will be referred to as Osipov’s Battles.

The fourth data base is somewhat arbitrarily formed of short battles, most less
than one day in duration. An upper and lower bound on the duration of the battles
(in hours) was placed in an attempt to facilitate the calculation of time dependence.
These data are given in Table (D.4), and will be referred to as Short Battles.

The fifth data base, consisting of Worid War | battles, is presented in Table
(D.5). There are all relatively long duration battles.

A sixth data base was also developed for battles which were fought to, or near
to, a conclusion. These battles will be discussed in a later chapter.

Each of these data bases was subjected to a correlation analysis and to a linear

®  These databases are presented explicitly in Appendix D. | apologize for the inconvenience to
the student, but since we shall refer to these data in later chapters as well, and | do not want to
continually reproduce the same data, | have chosen to locate them at the end of the book.
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regression analysis ala Equation (IX.C-5). The results of that analysis are presented ‘

in Table (X.C.1)
Table IX.C.1 Data Set Analysis Using Willard’s Formula
—

DATA SET ATTRITION ERROR CORRELATION # BATTLES
ORDER

Nominal Length Bat- 0.34 0.13 -0.44 108
tles '

Civil War Battles -0.33 0.26 -0.53 49
Osipov's Battles 0.80 0.61 -0.05 45
Short Battles 0.58 0.20 -0.24 72
WWI Battles 0.02 0.36 -0.65 12

—

From this table, we see that the attrition order varies enormously from one data
set to another. They evidently do not present an attrition order of 2.5. Lacking the
data sets of Williard and Fain, we cannot speculate further on the discrepancies
between these results and those of these two workers. We can, however, examine
the validity of Equation (1X.C-8), which we shall do in the next chapter. .

IX.D Further Analysis of the Data Sets.

In the process of performing the correlation analysis of the data sets, a curious
feature was noted. The initial and final force strengths were found to be highly
correlated. This is shown in Table (IX.D.1)

Table IX.D.1 Initial-Final Force Strength Correlations
—

DATA SET A,-A Correlation B,-B Correlation
Nominal Length Battles | 0.98 0.98
Civil War Battles 0.99 0.99
Osipov’s Battles 0.98 0.98
Short Battles 0.99 10.99
WWI Battles 0.98 - 10.98

50—
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These correlations are entirely too strong to be ignored. To illustrate this, the final
and initial force strength are plotted in the following figures shown collectively in

Table (1X.D.2).

Table IX.D.2 Correlation Plots of the Data Sets

)

DATA SET

FIGURES

FIGURES

Nominal Length Battles

1X.D.1 (Blue Force)

1X.D.2 (Red Force)

Civil War Battles

1X.D.3 {(Union)

I1X.D.4 (Confederate)

Osipov’s Battles

IX.D.5 (Stronger Force)

IX.D.6 (Weaker Force)

Short Battles

I1X.D.7 (Attacker)

IX.D.8 (Defender)

WWI Battles

IX.D.9 (Attacker)

IX.D.10 {Defender)

Examination of these figures reveals a high degree of linearity of the data. There
is some scatter, part of which may be due to the uncertainties in the basic data. This
degree of uncertainty, however, is not sufficient to negate the obvious conclusion that
there is some (fairly simple) linear relationship between initial and final force strengths.

It is also possible to postulate from this data that there is more than one linear
relationship between the force strengths. In Figure (IX.D.1), a decided slope change
may be seen for initial force strengths >150,000 as compared to initial force
strengths less than this value. A similar, but less well defined situation seems to exist
for Figure (1X.D.2) (It is moot to draw too strong a conclusion for these nominal length
battles as we draw no distinction between winner/looser or attacker/defender.)

As we proceed to examine the other figures, we observe no slope change for
the Civil War Battles (Figures IX.D.3 and 1X.D.4), but none of these battles have initial
force strength > 120,000. If we examine Osipov’s Battles (recalling now that force
strengths are given in thousands.) no clear slope change occurs for the Stronger Force
until ~ 250,000 (Figures 1X.D.5 and 1X.D.6). For the Weaker Force, there is a weak
slope change for ~ 175,000. This contrasts with Osipov’s conjuncture that attrition
order changes at ~ 175,000 force strength. For the Short Battles, (Figures IX.D.7
and IX.D.8), there are weak slope changes for force strength ~ 100,000. The World
War | data are shown in Figures I1X.D.9 and 1X.D.10.

From these plots, we may conclude that there is a strong linear relationship
between initial and final force strengths and that the slope of this relationship may
change as the initial force strength increases (changing at 100,000 - 150,000). The
exact quantification of these relationships may be calculated using linear regression,
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but before we perform such an analysis, a short side trip is needed.
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X. Arguments Against Lanchester Attrition Theory

X.A Introduction

In the preceding chapter, we reviewed the Lanchester validation efforts of
Engel', Busse?, Willard®, and Fain*. The first two examined an individual battle/-
campaign to test the merit of Lanchester Quadratic attrition while the latter two
examined collections of battles to calculate attrition order. While the first efforts
displayed some success, the latter resulted in an estimate of historical attrition order
of ~ 2.5, substantially different from the value between 1 and 2 that we would have
expected from Lanchester Theory.

Having introduced the serpent into Eden, it is appropriate now that we review
the chief arguments against Lanchester Theory before we continue our examination
of history.

One of the foremost critics of Lanchester Attrition Theory (LAT), as we have
noted before, is Trevor Dupuy, whose Quantified Judgement Model (QJM) we will
briefly review in the next chapter®®. Dupuy’s chief argument against Lanchester
Theory is based on the Willard-Fain analysis.

Another critic is Joshua Epstein, an analyst who also has an alternative combat
model, (which we shall also review in the next chapter,) presents three major
problems with Lanchester Theory:”®

(1) Why Withdraw?

(2) No Trading Space for Time, and

(3)- No Diminishing Marginal Returns.
We shall address each in turn.

X.B. Why Withdraw?

Epstein states that LAT does not contain any feedback, that "not one of the
equations can capture the-effort of withdrawal - a response to attrition - on the rate
of attrition itself.” This is a simplification whose apparent truth masks the basic
assumptions of Lanchester Theory.

Admittedly, Lanchester Theory does not contain any feedback mechanism to
alter the attrition rates in a withdrawal. Lanchester Theory is not a theory of combat?®,
but a theory of combat attrition; it should not be expected to automatically emulate
these effects. This is not to say that the efforts of withdrawal on attrition cannot be

For a somewhat consistent review, see Lepingwell, John W. R., "The Laws of Combat?”,
International Security, Summer 12. 89-134, 1987.
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incorporated. These effects can be incorporated in the attrition rates via Bonder-Farrell
Attrition Rate Theory (which we will discuss later in the book). Their effects do not
occur automatically, however,

Technically, Epstein’s first criticism is valid, but only if one misinterprets what
Lanchester Attrition Theory is. If one correctly views it as only a theory of attrition,
than this criticism is reduced to a statement of limitation.

X.C. No Trading Space for Time.

The second criticism is that the conclusion time predicted by Lanchester Theory
does not reflect withdrawal or movement. Again, the criticism is true but is
fallaciously based on the idea that Lanchester Theory is a general theory of combat.
Thus, this criticism not only carries forward the same misunderstanding of previous
criticism, but compounds it by misinterpreting the nature of the conclusion time.

The conclusion time is a mathematical convenience, a tool. It does not hold any
relationship to actuality that his ever been demonstrated. If we accept the restriction
that Lanchester Theory is a limited theory of attrition in combat only, then we must
look elsewhere for models of the condition that initiate and terminate attrition! The
conclusion time is most certainly not a model of that except under extraordinarily

circumstances.

We may sketch a set of Lanchester differential equations that incorporate withdrawal
and trading space for time. Assume that the force strengths of the two sides are
functions of time and position, and that the attrition rates are (at least) functions of
position. In this case, we may write a pair of attrition differential equations

%A(g.t) = -a(r,,rz)B(rg,t), (X.C-1)
and
2 B(rp.t) = - Blrg T )A(r, ), (X.C-2)

with the supplemental trajectory equations,

t
rr) = 1,(0) + [ v (¥ at, (X.C-3)
) _

and



t

ra(t) = 15(0) + [ v(t)) dt, (X.C-4)
0

where: A,B are the time and position dependent force strengths,
a, B are the position dependent attrition rates,
A Ig are the time dependent positions of the two forces, respectively,

and
Va. Vg are the time dependent velocities of the two forces, respectively.

We now divide the engagement into two parts in time. For 0 < t < t,;, we take

ZA(t) =0,
vi(t) < 0, (X.C-5)

in the sense that | r,-ry | is decreasing, so that the A force is stationary (defending)
and the B force is advancing (attacking). For t; < t < t,, we change v, so that

v, <0, (X.C-6)

so that the A (defending) force is now withdrawing, and probably

lval 2 [val,

so that the defending force is withdrawing faster than the B force is advancing. The
effective zeros of the attrition rates with range separation would thus define t, at this
separation as the close or end of the engagement. If we view the attrition rates as
being given approximately (we will treat this in greater detail in the section of the
book on attrition rate theory,) as

a(IA'IB) = pB pkB Pms(&;[x)s (XC'8)

(and similarly for 8,)

where: pg is the Blue unit rate of fire,

P is the Blue unit probability of kill per shot, and

PLos is the probability of Line Of Sight (LOS) between the two positions,

and '
PLos is @ symmetric function in its arguments, that is,

pLOS(ZA!fB) = Pws([m_&) ’

then the attrition rates will become zero when p s becomes zero. (Distinctions
between hull defilade and fully exposed target effects are, among other places,
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contained in the p,’s.) This effectively closes the engagement at some time (which we
are liberty to designate t,,) given by the values of the positions.

This division of the movement into two regions has the effect of modeling
withdrawal and trading space for time in the engagement using Lanchester Attrition
Theory. We could, of course, embellish the model by using different attrition rates for
the two divisions, and probably should, but this embellishment is unnecessary to
demonstrate our point that these two criticisms of Epstein’s can be treated with LAT.
Admittedly, this model does not incorporate feedback, as Epstein’s model of the next
chapter does, but it does allow us to address the two criticisms.

X.D. No Diminishing Marginal Returns.

This criticism relates to the quadratic State Solution. The argument is that if
one force is twice the other, then the second force must have an attrition rate four
times the first’s to force a stalemate. As Epstein points out, this is not born out by
history, although history also displays that the assumptions of Lanchester Theory have
been violated as well.

Simply put, it is possible for the state solution to apply, but only if the
assumptions implicit in Lanchester Theory apply as well. As soon as one side becomes
larger than the other, keeping all units in combat becomes problematical. As before,

the criticism becomes limitation.

X.E. Back to History.

The criticism of Lanchester Attrition Theory thus come to be seen as turning on
whether history will support the mathematics. As we have seen, Epstein’s criticisms
are fundamentally based in an expectation that Lanchester Theory is a general theory
of combat, which it is not. Having eliminated the teeth of these criticisms of what is
not, what remains is a question of whether the data of history will support Lanchester

Theory?

Basically then, the question comes down 0 the analysis of Willard and Fain.
As we have seen , these give rise to attrition orders of ~ 2.5 in their calculations, and
substantially other values for our data bases. We must therefore examine these data
basis in some more detail.

Before proceeding on this, we take time to examine the behavior of Willard’s
equation
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In(é) - |n(_f1) s (n-1) |n[f2) , (X.E-1)
a o B,
under simulated conditions where we know n=2. If we take a series of values for A,,
generate from distributions A, B,., a and 8, and calculate B from the state solutions,
how likely are we to get n = 2? We conducted just such an experiment, and found,
for this experiment, that we got an average attrition order of 1.86 with a standard
deviation of 0.75. This is a very large standard deviation, but it indicates that an
attrition order of 2.5 is not as strong a deviation from the desired value between 1.5
and 2 as we would expect. The noise in the method itself may be making the situation
seem worse than it really is.

Next, we tried another attrition equation based on the differential equation
itself.

dité = -ad?™ B, (X.E-2)
which we rewrite as
j;in = -an A B, (X.E-3)
and integrate approximately as
Agnu=“;"(%%+A3y (X.E-4)

We expand the left hand side in the same manner as for Willard’s equation and get

A; ' a = 55" (4oBy + AB), (X.E-5)
where:
a=A,- A= AA. (X.E-6)

We rewrite Equation (X.E-b) as
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|n(__2_“_) - In(az) + (1 - n) In(4y), xen @
A,B, + AB

and curve fit it (and the similar equation for B.) This gives an average attrition order
~of 1.94 with a standard deviation of 0.08.

Next, we applied this fitting technique to the historical data introduced in the
preceding chapter. The results are given in the Table.

Data Set Attrition Order Standard Error Number of Bat-
tles
Nominal 1.883 0.065 108
Civil War 2.097 0.125 49
Osipov 2.124 0.139 38
Short i 1.838 0.066 72
World War | 1.901 0.223 12

|

This gives an average attrition order of 1.942, which is in the region, between 1.5
and 2, sought by Willard and Fain. These results are much more consistent with what
we would expect from Lanchester Theory, as demonstrated by the errors when
compared to those calculated in the previous chapter.

Why should this fitting method be better than Willard’s formula? If we make
scatter plots of the independent versus dependent variables for Willard’s equation,
equation (X.E-1) (i.e. In(a/b) versus In(A,/B,)) and for our approximately integrated
differential equation, equation (X.E-7) (i.e. In(2a/(A, B, + A B)) versus In(A,) and
In(2b/(A, B, + A B)) versus In(B,)) we see an apparent reason. We present these for
the Nominal Length Battles data set in Figures (IX.D.1) and (IX.D.2) respectively.
Imagine how you woulr draw a straight line through these data (which is what the
linear regression will do.) My intuitive guess for doing this in both figures would draw
the line running from upper left to lower right. This intuition is completely wrong for
the result we desire from Willard’s formula since for n = 2 we would want a slope
of one! The intuition is right for the appriximately integrated differential equation since
for n = 2 we would want a slope of minus one. Further, notice the high degree of
scatter in figure (IX.D.1) as compared to figure (IX.D.2). This tighter pattern in the
second figure contributes to a better fit in the linear regression. Thus, while we would
expect a better fit from Willard’s formula, since it is based on exact integration and
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incorporates the same approximation of loss representation as we used in the
approximately integrated differential equation, it does not provide us with as compact
a set of data as the latter equation. Despite the greater degree of approximation
introduced in the approximately integrated differential equation approach, it therefore
appears reasonable to accept it as a better estimator of attrition order than Willard’s
equation.

There is another potential source of error that we should also recognize. In
Willard’s equation, the intercept of the fitted line is the logartithm of the ratio of the
attrition rates, while in the approximately integrated differential equation, the intercept
is the logarithm of the attrition rate. If we view the attrition rates during as random
variables then the approximately integrated differential equation will fit the intercept
(approximately) to the mean of the distribution. This is not the case with Willard’s
equation. An initial view would lead us to believe that the intercept for Willard’s
equation should be approximately zero if the two attrition rates are drawn from the
same distribution and we are calculating the ratio of the mean of that distribution to
the mean of the same distibution. This is not the case, however. What we are
calculating is the mean of the logarithms of a set of sample draws from the
distribution. The distribution of these ratios is considerably less well behaved than the
distribution of the attrition rates. Any skewness in the distribution about the mean is
magnified and this can lead to greater distortion in the data and the resulting fit.
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XI. Two Alternatives to Lanchester

XI.A. Introduction.

In the previous chapter, we reviewed some of the primary criticisms of
Lanchester Attrition Theory, noting therein that two of the critics: Trevor Dupuy and
Joshua Epstein had advanced combat models of their own as alternatives to (or
improvements over) the Lanchester model. The purpose of this chapter is to briefly
review each of these models to provide a basis of comparison between the butk of the
book and some of the alternatives. This review will be sketchy and cannot begin to
do justice to the efforts of these two workers in developing their models. | apologize
here and now for errors and omissions of explanation caused by my lack of under-
standing. .

XI.B. The Quantified Judgement Model

COL Trevor Dupuy is a well-know military historian; his Quantified Judgement
Model (QJM) reflects that, being based on Clausewitz’s "Law of Numbers"

"If we ... strip the engagement of all the variables arising
from its purpose and circumstances, and disregard (or strip
out) the fighting value of the troops involved (which is a
given quantity), we are left with the base concept of the
engagement... in which the only distinguishing factor is the
number of troops on either side.

These numbers, therefore, will determine victory (and are)

the most important factor in the outcome of an engage-
ment...

This ... would hold true for Greeks and Persians, for
Englishmen and Maharattas, for Frenchmen and Germans "’

The basic description of the QJM is Numbers, Predictions, and War? , updated
by Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War®.
The student must be prepared for diligent inspection when studying these texts. COL
Dupuy is not a mathematician, his formulas are plagued with apparent inconsistencies
and errors. Parameters that change with tactical era are not always vigorously
identified, and some alternative definitions may border on being contradictory. Many
of the formula are derived from historical data so they may not appear obviously
logical, or agree with similar formula obtained by other means. We must keep in mind
that there are two sets of messages here: the historical and the mathematical; and not
allow the complexities and mistakes in the latter to destroy our learning from the
former.

The fundamental relationship of the QJM, taken from Clausewitz’s Law of
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Numbers is the combat power of a side, defined by
P=SVC,, (X1.B-1)

where: S = Force Strength (which is different from the Lanchestrian),

V = Operational Variables, and

C.. = Combat Effectiveness Value.
The Combat Effectiveness Value is judgmental factor, related by Dupuy to nationality
and generalship, that modifies the combat power. Dupuy admits that "there is as yet
no scientific way to forecast C,,’s."

The force strength is the summation over ail the elements of the force of

S= Y Wrhzw,

allelements

where: - W, = Operational Lethality Index,
r, = terrain factor,
h; = weather factor,

z. =sensor factor, and

w; = air superiority factor.
The Operational Lethality Index is calculated as the quotient of the Theoretical
Lethality Index and the Dispersion Index (the area in km? occupied by a force of
100,000) which is a function of tactical era and situation. It represents a density of
forces on the battlefield. The Theoretical Lethality Index formula depends on the type
of weapon, and includes the technical characteristics of the weapon including
lethality, accuracy, and vulnerability. Thus the Operational Lethality Index can be
thought of as being proportional to the (Lanchestrian) Force Strength times the

attrition rate.

The Operational Variables V is a product of several factors including mobility,
leadership, training, morale, logistics, military posture, terrain, weather, season, and
vulnerability. This variable incorporates the type of engagement, and distinguishes
attacker from defender. '

Dupuy predicts battle outcome based on two quantities: the Combat Power -
the larger shouid be victorious, and the result formula

R = Mf + Es? + E_, (X1.B-3)
where: M; = mission accomplishment,
E. = spatial effectiveness, and

= casualty effectiveness,

cas
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which should also be larger for the victor. The mission accomplishment is judgmental.
Spatial effectiveness is calculated from both sides’ force strength and advance rates.
Casualty effectiveness is calculated from casualty predication formula.

In summary, the QJM is a general model of combat based on historical develop-
ment. It is considerably more complicated than the basic Lanchester model. Its chief
drawbacks are its complexity, often contradictory formalism, its inherently judgmental
components, and its lack of detailed consideration in a scientific sense. It is also a
relatively fragile model. it must be used in an "all or nothing " form, it has no scientific
basis for introducing new technology for consideration, and it may be too uniquely
embedded in the warfare database of its origin.

XI.C. The Epstein Model

This model, considerably similar in form than the QJM, is documented in The
Calculus of Conventional War* and Strategy and Force Planning®. The model is
structurally somewhat similar to Lanchester attrition. It has a finite difference form
with time increments of days.

The attacker ground lethality evolution equation is
A (1) = Af(t-1) - a(t-1) A(t-1) - Cp(2-1), (XI1.C-1)

where: a(t-1) = attacker’s total ground lethality attrition rate per day (on (0,1))
C..o(t) = attacker’s ground lethality killed on day t by
defender’s close air support. o

Note that a is the defender’s attrition rate in Lanchester terms, expressed as a fraction
of the attacker’s strength. In this model, instead of force strengths in numbers, the
operant quantities are ground (and air) lethality. For homogeneous aggregation, it
would seem that total force strength and force ground lethality are approximately
linearly related by a constant?

The defender ground lethality evolution equation is:
a(t-1
D(t) = D(t-1) - —(_p_-l A(t-1) - Cot-1), (XI1.C-2)
where: C.alt) = defender’s ground lethality killed on day t by
attacker’s close air support, and
p = attacker’s ground lethality killed per defender’s ground

lethality killed (average ground to ground exchange ratio.)

The ground lethality rate is given by
where: a,=attacher’s ground-prosecution rate,
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a(r) = o (f) (1 - ;v—“’uf(%) (XI.C-3)

w(t) = defender’s rate of withdrawal, and
wuax(t) = defender’s maximum rate of withdrawal.
The withdrawal rate has an evolution equation,

w(t) = 0,a(t-1) < e,
= w(e-1) + Suax ~ W(H)( aft) - g )iaft-1) > e, (x1.c-4)
1 - o,
where: L
o ft) = 2e8) = Delr1), (X1.C-5)
D,(t)

and ay = defender’s threshold attrition rate.
The close air support aircraft surviving on with day t have the forms,

D(2) = D,(1) (1 - ag 7, (X1.C-6)
for the defender,and
AD) = A1) (1 - ey, )Y, (X1.C-7)
where: a,., a,, = defender, attacker aircraft attrition rate per sorte, on (0,1),
and S, S, = defender, attacker sorte rate.
The ground lethality killed by close air support aircraft are:
Sg+1
L - (1 - ay)* ]
Cp(t) = = D(r) K, @l -1, (X1.C-8)
14 4
and
1-(1 - a,)™"
C. (1) =Lak, (4 -en)” ] , (X1.C-9)
V aa
where: L is the number of "lethality points™ per division equivalent,

V is the number of armored fighting vehicles per division
equivalent, and

Xl-4 -



K. K, are the defender, attacker Close Air Support kills of
enemy AFVs.

Epstein claims that this model incorporates feedback on both attacker and
defender sides that moderates the battle. It clearly has feedback and while we have
not exercised the model sufficiently to completely establish the extent of the
feedback, it is already there.

This model is more general than what we have seen so far in Lanchester theory.
We do not believe it is as general as Lanchester theory in terms of admitting different
aggregations’ of forces. It has not been subjected to the validation efforts that the
Lanchester Theory has.

Perhaps the most difficult thing about this model however is an apparent
tautology. The quantity p is defined as the ratio of attacker ground lethality killed to
defender ground lethality killed. Thus

_ AAg(t)

, (XI1.C-10)
ADg(t)

where we have reintroduced the A notation.

If we substitute equation (XI.C-10) into equation (XI.C-2) , we get, (changing
to the A notation we are used to,)

AD1) = -“—(";‘11 Aft-1) - Cu(-1)

(XI1.C-11)
ADt)
= el TR Al - Cadlt)
which we may simplify as
AA(T)
AA[(2) = -a(t-1) A (t-1) - Cpu(t-1) —£ (X1.C-12)

AD,(2)
This is not the same as equation (XI.C-1) unless the last term reduces to C_(t-1).

This is the fundamental problem with the Epstein model. While it does have the
feedback that allows trading space for time, it has no accommodation for calculating
the attrition rates on the firm scientific basis that Lanchester theory does. It is useful
for studying that feedback correlation, but not for evaluating the interplay of different
force components and new weapons technology on the battlefield.

XI-5




XI1.D. Conclusion.

We have examined both the QJM of Dupuy and the Epstein model. Both are
more general models of combat than Lanchester Attrition Theory, and both are
somewhat more specialized models which do not have the generality to allow for the
evaluation of force components and technology. They provide useful insights into
combat processes, but their greater "correctness" reduces their generality compared
to the mechanics of Lanchester Attrition Theory.
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XIl. The Recent Unpleasantness

XIl.A. Introduction

As a child growing up in the South, | frequently heard little old ladies, at least
my grandmother’s age, using this term to refer to what we now seem to have settled
into calling the Civil War.® These ladies had learned the term from their grandmothers
or even great-grandmothers, who may have experienced the shortages and emotions
of the war itself, but assuredly had experienced the frustration and agony of
Reconstruction. To these ladies, the War was not a matter of military effort, but the
impact of the war on their daily lives.

The Civil War was much closer to the people in those days. The rite of passage
of becoming a teenager, and the Centennial of the war are irrevocably linked periods
for me. The social acceptability of beards turned about within a matter of months and
fashion retreated to hoop skirts and frock coats on such a multitude of occasions as
to become the norm. No cemetery, less than a half century old, did not contain
markers commemorating that the penultimate activity of the man interred thereunder
was to serve in the war; his life and accomplishments afterwards being too mundane
and colorless for memory

While no Southron community has forgotten the war, most Northern
communities have. Except for those whose economy is dominated by a battlefield or
a war hero’s home, the only Northern community with memory, that | have found, is
Carlisle, PA, and their memory is largely limited to Stuart’s raid of '63. Still, there are
pockets of interest, evidenced by civilian commemorative units who reenact battles
even in places where they never occurred, such as California and New Jersey.

Modern liberals may decry this seeming worship of a war whose raison d’etre,
in their minds, was largely racial. Still, the Civil War is also a matter of serious
professional study, as evidenced by the fact that one in five of history books written
in this country deal with the war.

Well may we study the Civil War. Its influence on our society has been more
profound than any war except the American Revolution, and its evolvement of the
general populace was much more widespread. The span of its battles and engage-
ments is enormously greater, with some authorities claiming the number exceeds five
thousand.

®  Also known as the War Between The States, the War of Southron Independence, the War
of Northern Aggression, and the Second American Revolution, to cite only a few, clearly with a
Southern proclivity.
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In our current age, there are still many lessons to be learned; many insights to
be drawn from the war. In our current environment of high and rising technology, and
the reduction of the sizes of the armed services in the demise of the Soviet Union,
there is considerable information. By studying the war, we may hope to learn how
armies adopt technology and develop tactics and doctrine. The advent of railroads,
breech loading guns, rifling, and connodial bullets were no less military innovations in
their day than electronics and guided weapons are in ours.

In some cases, the technology was successfully digested into doctrine, as with
railroads. Other technologies were not so successfully adopted. A case in point were
longer range, more accurate, and higher rate of fire infantry weapons. This failure has
been ascribed as the cause of high attrition rates, especially for the Confederacy.'?
We shall examine this in subsequent sections.

Another area of interest is the rapid expansion of the armed forces from small
professional cadres to large volunteer(?) establishments, and the development of
organizational methods for intermixing and managing state (i.e. National Guard or
Reserve) units with national (i.e. Active Component) units. While this was not the only
time this has occurred in American history, it was the first time on the scale of a
major national conflict rivaling the first and second world wars. Notable in this process
(among other examples,) was how the armies were able to foster the growth and
advancement of civilians who proved exceptional soldiers, as evidenced by men such
as John Singleton Mosby and Joshua Lawrence Chamberlain, while surviving and
culling inept, often political, appointed to high rank without benefit of training or
extensive experience.

Our interest here is to examine the Civil War as it provides evidence for and
against Lanchester Attrition Theory. We are not primarily concerned with the political
and many of the military aspects of the war. The battles and engagements are a
source of data and because of the extensive study and documentation of the war,
they are an almost unique source of such data.

in examining the Civil War, we shall approximately follow the outline and much
of the content of Weiss’ seminal article on the war.> We shall not attempt to
completely reproduce that article here as it is readily available through professional
and collegiate libraries. The student should study the article to fully - »preciate
nuances and differences of interpretation between myself and Weiss. Ot . eatment
here will be somewhat different, as dictated by the needs of a textbook ther than
a research paper, and reflecting some of the greater advantages now available in
digital computers for data analysis. For the peace of mind of the student, especially
the one not particularly mathematically or computer oriented, | will emphasize that
most of the analysis presented here has been accomplished with a standard personal
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c

computer spreadsheet program,® with only occasional use of a statistics program.
| wish to emphasize that | resort to the latter out of a desire for convenience and
simplicity; all of the calculations could have been done with the spreadsheet program
but with greater effort. (I would have had to put in the formulas explicitly.)

XIl.B. Data and Statistics

In a footnote to the introduction of his paper, Weiss states that the work
presented is "the result of the author’s hobby." Be this as it may, it is clear from the
article that hobbies do not have to be amateurish. This article amply demonstrates
that the Victorian custom of scientific research as hobby did not die with that
monarch. This paper is an excellent example of small science (i.e. funded not by some
government or philanthropic organization, or conducted in some enormous university
research laboratory,) at its best.

Weiss briefly describes the previous efforts to apply Lanchester Theory to
historical data: Engel and Willard; described in earlier chapters. Weiss notes that
"Willard’s conclusion that ""there is little value in a simple version of Lanchester’s
equations as a predictive tool, where the only known quantities are initial strengths™"
is both a discouragement and a challenge.” We have examined, in the preceding
chapter, an alternative approach than Willard’s to estimating attrition order, and we
shall continue that analysis in this chapter.

Weiss goes on to note, as we have, the relative wealth of data on the Civil
War, its importance as a precursor of modern mechanized warfare, and the evidence
arguing against "computerized war". Perhaps equally important, beyond the wealth
of data, is the temporal and geographic compactness of these data. While this
detracts from drawing general conclusions about WAR from the data, it also makes
any trends and correlations easier to accept. Further, it provides a compact set of data
that may provide insights that can be tested against the more general data sets, but
which may have been hidden in their generality. (We do concede considerable tactical
evolution during the progress of the war, as noted by military historians.*)

b | started out using Quattro Pro (r) from Borland, and upon shifting to a Windows(r) environ-
ment, changed first to Excel(r), and then to Quattro Pro for Windows(r). This is not an endorsement
for any spreadsheet program or any coding house. | merely want to emphasize that any personal
computer, Macintosh, or workstation spreadsheet program will support most of the analysis and
graphical presentation needed.

¢ While most spreadsheet programs will perform linear regression, they will not perform more
elaborate statistical tests and calculations, such as correlations. There are a variety of programs
that may be used to do these calculations, but | have used STASTIX(r) from Analytical Software for
this effort because | was able to buy a copy at an Operations Research Society of America
Convention. Thus, my selection was based on its ease.

XIlI-3



Weiss draws his data from three sources: Phister®, Livermore,® and Bodart.’
The latter source is common in use with Willard. Of the three, only Livermore has
been available to us. For convenience, we reproduce these data in Table (XIl.B.1). As
before, we include only those battles and engagement for which both initial and final
force strengths of both sides are recorded; durations in days are also available. Weiss
states that Livermore is the most meticulous of the three, that he designates winner
and loser, and he distinguishes between assaults on fortified lines and other battles.
While Livermore lists 64 battles, only 49 have complete data.

He concludes after initial analysis that the cumulative losses on both sides are
approximately equal when summed over the whole war. Further, casualties occur at
approximately a constant rate for the Confederacy, with 1863 and 1865 being low
rate years, and 1864 being a high rate year for the Union, obviously reflecting Grant’s
strategy.® He also gives the distribution of number of Union battles by loss and
shows that the number of battles is piecewise distributed by loss to the -2/3, -1, and -
3/2 power. (Weiss presents figures showing the cumulative loss and the loss
distribution that we do not reproduce here.)

Weiss also examines other time behaviors and distributions. We present
equivalent figures to his for our data set. In Figures (XII.B.1) - (XIl.B.4), we show
scatter plots of Union initial and final strengths, killed, and wounded plotted versus
starting date of each battle or engagement. The equivalent data for the Confederate
side is given in Figures (XI1.B.5) - (XII.B.8).

In Figure (XI1.B.9), we present a scatter plot of battle duration versus date.
Figure (XI1.B.10) shows Confederate:Union initial force strength ratios (i.e. Co/U,) ver-
sus date.? Figure (X1I.B.11) shows Confederate:Union loss ratios (i.e. AC/AU), versus
date.® The student is free to examine these figures in search of pattern or trend; | am
unable to find one. This is consistent with our earlier investigations. We note that
while Confederate losses become selectively more extreme in the latter part of the
war, as noted by historians, attributing this to the greater tactical and operational
sophistication of Union leaders, and the greater urgency of staving off thrusts toward
Richmond. Regardless, Confederate losses (absolutely,) are less than Union losses in
more than 57% of the battles in our data set.

4 Weiss uses several force ratios in his paper. We present a table of some of the more widely
accepted and used force ratios in Appendix E, and discuss them in greater detail in a later chapter.

¢ The initial force strength ratio is oftem called the initial force ratio, I,; the ratio C/U is often

called the remaining force ratio {often R, but not to be confused with Weiss’ R in a later section of
this chapter;) and the ratio of losses AC/AU, is the Loss Exchange Ratio, Lgg.
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This does not however, paint a complete picture. An equally important quantity
in this case, is the Fractional Exchange Ratio (Fg) which shows the ratio of the
relative losses for the two sides. If we define the fractional losses as

AU
s ==, (X11.B-1)
fw =
for the Union side, and
fic = AC (XI1.B-2)
] CO

for the Confederate side, which show the fraction (on the interval [0,1],) of losses to
each side, then the Fgg is just

FER = .fi(,_" (XII-B‘3)
Sy

for the Confederate:Union ratio. We could equally well express the Fractional
Exchange Ratio as the inverse of this (for the Union:Confederate ratio) if we so chose.
Our interest here is in relative Confederate losses compared to relative Union losses
so we define the Fg; this way. The student should note that this is an asymmetric
representation because it accentuates large Confederate losses relative to Union
losses. A symmetric representation would be the Logarithmic Fractional Exchange
Ratio which is just the logarithm of equation (XI1.B-3). We plot the Fg; versus date in
Figure (XI1.B.12). Note the greater number of high Fgs in the latter part of the war,
which, if we believe our data set to be representative, and we really have few other
options if we are to try to draw any numerical insights, indicate a deterioration of
tactical options or innovation to control losses. In all, we note Fgis < 1 in only about
45% of the cases, which clearly supports the theses of historians such as McWhiney
and Jamieson. Further, no less than six battles have Fgss greater than 2 and four of
these are greater than 4! This number is significant compared to our total data set (49
battles) in demonstrating a Confederate willingness to accept high casualties despite
their relative numerical inferiority and superiority as fighte s indicated in the previous
figure.

Before continuing, it is worthwhile to establish the relationship between
fractional loss ratios, and Fg; and Lanchester Attrition theory. If we start with the
general form of the state solution, equation (VII.B-5), slightly rewritten as

a( Cé‘ - Cn) = B( Uo" - Ur )_ (X"B-4)

If we expand C and U to first order in losses (AC, AU) and perform some minor
algebra, this becomes

Xil-5
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«Cy'ac = pUs A, (XI1.B-5)

which we may conveniently rewrite in the form,

AC n AU .
0Co— = pU, —. (XI1.B-6)
0 C, B Uy 7

This equation may be recast immediately using equations (XI11.B-1) and (XII.B-2) as

aCé’ fl,c = ﬁUO" f;,U’ (XI1.B-7)

which relates the fractional losses (as long as they are small,) to the initial force
strengths and the attrition rates. Obviously, then the Fg is just

n

Fg = bl (XI1.B-8)
n
(!Co

again providing the losses are small. Note that the attrition order is preserved. It is
interesting to note that Lanchester theory predicts that the Fy; of a battles should be
a constant during its progress. We shall examine this issue in greater detail later.

Weiss also presents frequency distributions of force and casualty ratios. In
keeping with his outline, we present the Confederate:Union initial force strength ratio
frequency distribution in Figure (XH.B.13). The bin widths (0.2) for the frequency
distributions are identical to those used by Weiss. Examination would lead us to
speculate, except for the relative minima at force ratios on (0.8,1], that the
distribution is Poisson or Gamma. Investigations of further distinctions, such as
attacker/defender, or assault on fortified lines/other, might yield insights into the
likelihood of attacking.

The equivalent distribution for C:U final force strength ratios is given in Figure
(X11.B.14). This distribution has the same general form as the distribution of initial
force strength ratios.

A similar consistency may be found in the frequency distributions of final to
initial force strength ratios. These are given in Figures (XI1.B.15) and (XI1.B.16) for the
Confederate and Union sides, respectively. In this case, the use of Weiss’ bin sizes
is ill chosen. (Weiss did not include these figures in his article.) Nonetheless, we shall
investigate the relationship of final to initial force strengths in the next section.

We also include several other distributions for general interest. Figures
(X11.B.17) and (XI1.B.18) show the frequency distributions of Confederate (Union) final

Xlil-6
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force strength to average Union (Confederate) force strength. The frequency
distribution of the ratios of Confederate losses to Union losses is given in Figure
(XH.B.19). None of these display any obvious type of pattern.

The frequency distribution of battle duration is given in Figure (XII.B.20). It
would appear likely that this distribution is close to being negative exponential.

Next, in Figure (XIil.B.21), we present the frequency distribution of C:U Fgz. The
general shape again suggests a Poisson or Gamma distribution aside from the large
frequencies in the 1.6, 5, and 6 bins.

Finally, we examine losses. In Figure (XI1.B.22), we present a scatter plot of
Confederate losses versus Union losses. This figure is a logarithmic plot, but is fairly
clearly a symmetric pattern about a line with slope of approximately one. This
behavior supports Weiss’ findings about approximately equal losses on both sides.

In Figure (XII.B.23), we present a logarithmic scatter plot of C:U loss ratio
versus U:C initial force ratio. We have not divided the data into two sets: attacks on
fortified lines, and other; as Weiss did. Despite the scatter, there is a strong
suggestion of a linear relationship with small negative slope. This is an interesting
speculation. It implies that the Confederate forces were more effective against larger
Union forces than against smaller ones. Does this further imply that Confederate
leaders had a better command of Grand Tactics (Operational Art) than Union leaders
had? This may be too strong an assertion, but it supports arguments of superior
Southron generaiship and makes a counter argument to McWhiney and Jamieson.

XIl.C. Force Strengths and Attrition Order

In this section, we temporarily depart from our general outline of following
Weiss’ article to examine some of the behavior of force strengths and attrition order.
As we have already noted in conjunction with Figures (XI11.B.15) and (Xil.B.16), the
frequency distributions of final to initial force strength ratios are rather narrow. This
merits additional consideration.

In Figure (XI1.C.1), we present a scatter plot of Union final force strength versus
Union initial force strength. As we noted in the preceding chapter, the degree of
linearity shown in these Civil War data, indeed in all of our data sets, is striking. The
equivalent scatter plot for the Confederate side, given in Figure (XI11.C.2), is somewhat
noisier, but similar and also striking. We may postulate that these data have the
functional relationship,

Xi-7
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|

where S indicates force strength, and o is the slope of the line. The line has no
intercept value since we would expect there to be no losses for a force of zero initial
strength. If we curve fit these data, we obtain the slopes given in Table (XII.C.1) We

Table XII.C.1 Homogeneous Final:Initial Force Strength Linear Relationships
.|

Side Slope Slope Standard R?
Error
Union 0.8852 0.0069 0.9926
Confederate 0.8405 | 0.0116 0.9766

may glean several insights from this information. First, on the average, Union forces
lost about 11% of their initial strength per battle while Confederate forces lost about
16% of theirs per battle. This is another piece of evidence supporting the arguments
advanced by McWhiney and Jamieson. The small slope standard errors and the large

‘ R? values' indicate the relative goodness of the fit and strongly supports the concept
of functional relationship between initial and final force strengths implicit in Lanchester
Attrition Theory. The relatively large standard error and smaller R? for the Confederate
side reflects the greater spread in the data as shown in Figure (XIl.C.2) as compared
to Figure (XII.C.1).

We may also examine the behavior of Confederate (Union) final force strength
versus Union (Confederate) initial force strength. These scatter plots are given in
Figures (XII.C.3) and (XIl.C.4). We can immediately see that there is considerably
greater scatter in these cross force plots than in Figures (XI1.C.1) and (XII.C.2). If we
curve fit these data using Equation (XIl,C-1), we obtain the results given in Table
(X11.C.2). The values of the slopes clearly reflect that C:U initial force ratios were
generally less than one (67%), and that Confederate losses were generally relatively
larger than Union losses. The relatively smaller values of R? as compared to those in
Table (XII.C.1) indicate the lesser tightness of the relationship to the data, but their
essential equality hints at correlation.

f Recall that R? is defined on the interval (0,1) and the closer its value to one, the better the
correlation of data and fit.
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Table XII.C.2 Heterogeneous Final:Initial Force Strength Linear Relationships
—

Initial Final Slope Slope Stan- | R?
dard Error

Union Confederate 1.0684 0.0476 0.7741

Confederate Union 0.6415 0.0275 0.7735

#

We have previously examined the attrition order of these data with our
approximately integrated differential equation (AIDE), which for our problem takes the
form,

e e - — XIllC-2
n( <. ) = In(az) + (1 - n) In(U,), ( )
for the Union, and
————— — bl XIl.C-3
|n[ <, ) =In(Bz) + (1 - n) In(Cyp), ( ) ‘

Table XI1.C.3, Attrition Orders and Average Attrition Rates
#

Side Attrition Order Average Rate R?
Order Standard Attrition Standard
Deviation Rate Error
Total 2.097 0.105 0.179 1.088 0.444
Union 1.949 0.146 0.077 0.879 0.475
Confeder- 1.865 0.082 0.176 0.497 0.699
ate

{500

for the Confederacy. The total is calculated by combining the two respective data
sets. Now, since we fully recognize that there may be differences between Union and
Confederate tactics, it is useful to separately examine the attrition order (and average
attrition rate) of each side. We present these in Table (XII.C.3), and plots of the basic

XI-9



data (left hand sides of equations (XII1.C-2) and (XII.C-3) versus initial force strength)
in figures (XH.C.5)-(XII.C.7). We have added a line which corresponds to an attrition
order of 2 for illustrative purposes only.

If we examine these attrition orders, it seems reasonable to postulate that
overall, for both sides, an attrition order of two (i.e. Quadratic Lanchester attrition,)
is within a standard deviation of being accurate. Examination of the individual sides
reveals smaller attrition orders, but for the Union, an attrition order of two is within
a standard deviation. This is not the case for the Confederacy. Alternately, if we view
our available choices of attrition order as 1, 3/2, or 2, then clearly these battles and
engagements can be viewed as having attrition orders of 2. The equivalent plot for
Willard’s equation is given in figure (XII.C.8), for comparison. If we add the logarithm
of the initial force strength to equations (Xll.C-2) and (XII.C-3), and multiply by minus
one, the result is a linear equation where the slope is the attrition order. We replot the
Union and Confederate data using this adjusted AIDE in figures (XII.C.9) and
(XI1.C.10). The n = 2 illustrative line has also been plotted.

Lacking a rigorous theory to explain attrition orders other than these, we can
accept from these plots that the battles and engagements in our Civil War data set
may be approximately described using the Quadratic Lanchester equations. The pundit
may claim that the R? values are fairly low, and this is indeed the case. We may reply
however, that the R? for this data set using Willard’s equation is smaller yet (0.3466.)
The pundit may also object that for this data set, we also have battle duration, so that
we may explicitly remove the r from the slope and calculate the average attrition rate.
If we do this, we find greater error, so we are forced to conclude that the quantity
attrition rate times duration is more representative than are the two separately.

The values of the attrition rates are surprising. It appears that the rate at which
Union forces could inflict losses on Confederate forces is, on the average, more than
twice as large as the rate that Confederate forces could inflict losses on Union forces.
The standard errors are quite large however, so the matter demands closer attention.
If we accept that the attrition order of these battles and engagements is approximate-
ly two, then we can calculate the individual attrition rates using the approximately
integrated differential equations for attrition order (n) of two. We present the scatter
plot of these data in figure (XII.C-11). There is no obvious pattern here, but we can
observe that the Confederacy’s attrition rate exceeded 0.2 in ten cases, while the
Union’s only exceeded this value in eight cases. In only two cases did both exceed
0.2 in the same battle. An interesting further investigation would be to examine the
difference between attacker and defender. If we examine the relationship between
attrition rate, and initial force strengths, shown in figure (XIl.C-12), we note the
interesting trend that the larger the initial force strength, the less likely that the
attrition rate would be large.

X1I-10
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To determine if there is a pattern lurking in these data, we calculated the
frequency distributions of the attrition rates. These are shown in Figures (X11.C-13)
and (XI1.C-14) for Union and Confederate, respectively. The Union distribution could
conceivably be Gamma, but what is striking is the Confederate distribution. While it
has no evident form, it is clear that the Confederate forces were considerably more
likely to fight fiercer than the Union forces. This explains the average values from the
linear regression - the Union fought more consistently than the Confederacy in terms

of attrition rate.

XI1.D. Meeting Engagements

Who won? It is always difficult to determine the winner of a battle? In
Clausewitzian terms, there is the question of whether the result was a military victory
or a political victory? If it was a military victory, was it a victory at the tactical,
operational, and/or strategic level? These questions are not easy to answer and
discussion still takes place over several of the battles in our data set.®

In this section, we return to the outline of Weiss’ article. His next topic is
meeting engagements, that is, battles and engagements that are not characterized by
the preselection of terrain, or of its improvement, by either side. Weiss states that
there were 22 battles in his data set that met these criteria. (Actually, there were 24,
but Weiss discarded two as "indecisive” in outcome per his sources."

Table XII.D.1, Average Casualty Ratio, Union/Confederate "Meeting Engagements"”
X

Winner Union Attacker Confederate Attacker
Union SR 1.09 (4) 1.06 (8)
Confederate 1.14 4) 1.13 (6)

{5

He presents tabular presentation of average casualty ratios, Table (XII.D.1), and
average force rations, Table (XIl.D.2), where the number of instances is given in
parenthesis. The number of battles for each case are shown in these Tables

parenthetically. Weiss notes that:
o arrival of additional units in the battles "washed out" initial effects,

¢ As a more recent example, consider Desert Storm. Today, 1993, there is still discussion
about the nature of that campaign. Clearly, it was a military victory in the sense that the objectives
were achieved. The consensus seems to be that it was a military victory at least at the tactical and
operational levels. Was it a strategic victory? Was it a political victory? This is much less clear.
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Table XII.D.2, Average Force Ratio; Confederate/Union "Meeting Engagements”

Winner Union Attacker Confederate Attacker
Union 0.62 (4) 0.70 (8)
Confederate 1.14 (4 1.28 (6)

° each battle consisted of a series of attacks and counterattacks
(This is a hallmark of meeting engagements.), and
° therefore, the designation of one said as attacker is faulty.

Table XII.D.3. Meeting Engagement Attacker Superiority Statistics

Attacker Battles with Force Super- Battles attacking
iority
Union 15 7
Confederates 8 6

Table XII.D.4. Average Force Ratio of Attacker

Attacker Average ratio, Confederate/Union
Union 0.87 (9)
Confederate 0.96 (15)

In general, and on average, the winner had a larger force ratio, although the
Confederate forces attacked with an average of 5% force inferiority. This is consistent
“with the thesis advanced about Confederate tactics. These data are summarized in
Tables (XII.D.3) and (XI1.D.4). Most critically, Weiss presents frequency data for the
fraction of Union wins as a function of force ratio. These data are given in Table
(XI1.D.5) and shown in Figure (Xll.D.1). Weiss claims that if we interpret this
frequency distribution as a probability of winning, the curve is best fit by a function
of the form

Xll-12
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Table XII.D.5. Fraction of Union Wins as Function of Force Ratio
. _________________________]

Confederate: Cases Average +50% Con- -50% Confi-
Union force Fraction of fidence limit dence limit
ratio Union Wins
0.40-0.49 3 1.00 1.00 0.63
0.50-0.79 11 0.68 0.80 0.54
0.80-1.25 11 0.50 0.64 0.36
1.26-2.00 1 0.00 0.75 0.00
2.01-2.50 2 0.00 0.50 0.00

p=—1 (XI1.D-1)
1+ pd
where: u = Confederate:Union force ratio (i.e. the initial force ratio).
We may examine this by comparing the data to different equations of the form
p-—1_ (XI1.D-2)
1+ "

where: n=12234.

These curves are also shown in Figure (Xi1.D.1). In principle, these data can be curve
fit, except that there are only two useful data points (the second and third!) This may
be seen if we rewrite equation (XII.D-2) as its inverse,

— (XI1.D-3)

=

and rewrite it as

-1 = ]J,"_ (Xl1.D-4)

If we now take the logarithm of this equation, we obtain
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In(% . ) = nIn(p),

which is a linear equation amenable to curve fit. Since the equation has no intercept,
however, the linear regression is trivial - it is just

1
) ) '"(? ) 1) (X11.D-6)
Y oin(w)

The student may verify this fact by consulting a text on linear regression. Note that
the first data point (P = 1) cannot be used because the argument of the logarithm is
zero - yielding a value of minus infinity. Similarly, the last two data points cannot be
used because they have P value of zero, thus logarithm arguments of infinity - yielding
values of infinity. We further note that the third data point does not contribute to the
numerator since it gives a logarithm argument of one - yielding a value of zero.

If we take the values of i as the mid points of the bins, then the value of n that
we obtain using equation (XII.D-6) with the data of Table (XIil.D.5) is approximately
1.84. This would lead us to believe that a value of n = 2 would be a better choice
than n = 3. We must note however, that Weiss does not state in his article how he
arrived at his choice of n = 3 except that it was a best fit. His consideration may also
have included the confidence limits on the data, and he may have used a different
fitting technique or different choices of bin value for u." This example serves to
demonstrate the ambiguity inherent in the data that is available. We cannot, and shall
not, state that Weiss’ value of three is not valid; we may only offer that there are
other results possible from simple analyses such as the example above.

h  This technique is very sensitive to the bin value selection. If we use the lower edge of the
bin value for u, then we get a value of n = 0.82, while if we use the upper edge of the bin value
for u, we get a value of n = 60!
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Table XII.D.6, Average Casualty Ratios, Confederate/Union "Meeting Engagements”

Force Ratio > 1.0 < 1.0
Casualty Ratio ©1.17 (10) 1.14 (15)
Winner Confederate Union
Casualty Ratio 1.15 (12) 1.13 (14)

Table XII.D.7, Average Per Centum Casualties

Union % Confederate % Average %
Winner. 11.6 (14) 12.6 (12) 12
Loser 14.2 (12) 15.9 (14) 15

Weiss also examines casualties in meeting engagements. He concludes from
the data, summarized in Table (XI1.D.6) that for meeting engagements, "the casualty
ratio is not obviously dependent on the force ratio and that casualties on both sides
tend to be equal within a factor of about 2.0." Further, casualty ratios (i.e. Loss
Exchange Ratios, Lggs) tend to follow a log-normal frequency distribution and from this
Weiss concludes that the arithmetic averages given in the tables "are consistent with
a median value of casualty ratio close to unity.” This suggests that the winner’s per
centum casualties should be less than the loser’s. This is summarized in Table
(XiI.D.7) These results may be compared with the final:initial force strength curve fits
performed in the preceding section. While those fits were performed on all data,
regardless of whether meeting engagement, they are consistent with these results.
The distinction between the statistics for a meeting engagement and other battles
must therefore be small for this data set, and presumably for the Civil War as a whole.

i This is Fiske's Principle of Winning, "every contest weakens the loser more than it does the
winner”, see Section II.D.
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XI.F. Weiss’ Probability of Winning Model

Weiss then develops a probabilistic model for winning. He starts by observing
(in recapitulation,) that:
1. The probability of winning seems to have a strong functional

relationship with initial force ratio.
2. Casualty ratios seem independent of attacker/defender, win-
ner/loser, and initial force ratio. The range of casualty ratio is 0.46 to
2.33.
3. The average loser casualties were 15%,; the average winner
‘casualties were 12%.
In comparison to our data set, the range of casualty ratio is somewhat larger. We
cannot compare winner/loser since we have not made that distinction.

Weiss postulates that the battle commences, and during its progress,
continuously assesses its ability to continue. The sole criterion for the assessment is
the cumulative fractional loss to that point. This is a simple model, but Weiss
prudently adopts it in preference to considering perceptions of the enemy’s abilities.
Thus he leaves intelligence estimates of initial strengths and relative losses to further

work.

This is noteworthy as an example of problem definition. The data will support
the model that Weiss has formulated. Without greater, and possibly fruitless and
ambiguous, research, they will not support the more elaborate considerations of

perceptions.

We may also view this model from a Clausewitzian vein. The value of
intelligence is questionable (for this era?) Clausewitz even goes so far as to lecture on
what information the commander should ignore. Given this, consideration of the
fractional loses is the only meaningful quantifiable criterion.)

The fundamental assumption in this model may be stated to be that the
casualty ratio at battle’s end is an exchange ratio characteristic of the battle and
sustained at a constant rate throughout the battle. Since the casualty ratio that Weiss
uses is the Fgs, and since equation (XII.B-8) gives the Lanchester Attrition Theory Fgg
as a constant, we may conclude that this assumption, and the development of the
whole model, are not inconsistent with Lanchester Theory.

i | do not mean to imply here that Clausewitz wouid have condoned this model. He would
probably have viewed it as a false application of rules that should be avided by the good com-
mander. It may however, be consistent with Clausewitz’s Law of Numt::-s, Section XI.B, even
including circumstances and quality of troops.
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Having established that Weiss’ model is consistent with Lanchester Theory
within the framework of small fractional losses that we have found in this Civil War
data set (and indeed, in all of our data sets,) we now proceed to develop the model
along the same lines as Weiss except that we generally substitute our notation for his
where they differ. He first defines the losses at time t < r, the time the battle ends
as

AU(z) = Up - U(t), ‘(X||.F-1)
AC(t) = Cg = C(t),

while the losses at battle’s end are

AU, = Uy - U(x), (XII.F-2)
AC, = C, - C(7). '

The fractional losses at battle’s end are then just

‘. a AU,
U=~ "5y
U (XII.F-3)
;= AC,
< q’

while the force ratios at time t are similarly,

A
gy = &y(?) = llj;.(t)a
A C‘(’t) (XII.F-4)
gc = 8c(t) = o
0

Note that Weiss’ f,,, and f; are the same as our previously defined f, and fc.

Weiss then defines four probability functions:

hy(gy) dgy. hélge) dge = probability that Union, Confederate

side gives up in dg,, dg., respectively, after having sus-

tained fractional losses g, g., respectively, and

®ylgy), ®clge) = probability that Union, Confederate side

continue to fight at least until sustaining fractional losses

du, Jc, respectively.
To develop these functions, he divides fractional losses into small increments (finite
differences). The probability that the Union force does not give up in the j* fractional
loss increment is then approximately
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1 - hy(jAgy)Agy- (XII.F-5)

Assuming that the eventual decision to break off the battle is independent of all
previous decisions, the probability that the Union force continues the battle through

n increments is approximately,

j=n

dyl8y) = L (1 - hy(jAgy) Agy)

(XIl.F-6)

]

which we may transform to a sum by writing the argument of the product as the
logarithm of each term exponentiated,

j=n

dylgy) = (1 - hulidgy) Axu),
i ,H _ (XII.F-7)
j=n
'21: In(1 - hy(iAgy) Agu)
= e”

Since the assumption has been implicitly made that the arguments of the logarithms
are approximately one, we may approximate equation (XII.F-7) as

Jen
-Y hylidgy) Agy (XH.F-8)

‘bu(gu) =e’™
This equation may be generalized from a sum to an integral, yielding,

£1/4

- [ hylew) dgy (XII.F-9)
dylgy) = ¢ ° .

A similar equation may be written for ¢q(gc).

Weiss next defines a constant R,

8c (XII.F-10)

as a direct consequence of assuming a constant exchange rate. Note that R is just the
inverse of the Fg, equation (XII.B-3). As we noted previously, the Fg; can be defined
either way.

Xll-18



Because of the assumption of independence, the joint probability that neither
side has broken off by time t (or losses gy, gc,) is snmply the product of the two
probabilities, thus .

o = ¢y dc- (XILLF-11)

The battle having proceeded thus far, the differential probability that the Union force
then breaks off is

dQy = @ hy(g,) dgy, (XII.F-12)

and the total probablhty that the Union force breaks off is just the lntegral of this
equation,

1 .
QU = f ‘bu ‘bc hu(gu) dgw
0 (XIl.F-13)

1
=f¢cd¢un
0

and Weiss will subsequently show that this integral is trivially performable from the
assumption of constant exchange ratio. That is,

b = &5 (XIl.F-14)
so that equation (XII.F-14) becomes
1
Qy = ¢a déy,
v { v (XII.F-15)
21
1+a

If we define the probability that the Union force wins (i.e. does not ever break off,)
as the complement of Q, then that probability is just

P, = a_ (XIl.F-16)
1+a

Weiss also computes the expected loss fraction in a battle, which is just the expected
value of the instantaneous loss fraction,

which completes the closure of the model in terms of the initially defined terms. Note
that equivalent quantities may also be developed for the Confederate side, both from
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1
fy = _f gy d®, (XII.F-17)
0

basic principles and from the symmetry imposed by the assumption. These are left as
an exercise.

XII.G. Data Analysis

Weiss next addresses his data set to estimate the parameters and functional
forms in his Model of Winning. To do this, he postulates the following:
L Let there be N, battles in the data set,

° If the Union side loses, there should be N, ¢,(f,)
entries in excess of f;.
L There should, however, be L. battles, for a given

value of f;, which ended at lesser value of f,, that the
Confederate side lost.

o Of these battles, L, ¢, should have continued to f,
and
° There are Oy battles in the data set that continue to f.

From this, Weiss estimates the probability function by equating these three types of
battles,

Oy = Ny &y - L¢ by, (XI1.G-1)

from which the probability function is just

by = O ) (XN1.G-2)
No - Lc

An identical equation can be written for the Confederate side.

Weiss then curve fits the resulting data (using a similar technique to what we
have previously described,) and obtains

_ oy
by =€ (XI1.G-3)
¢C = e‘kfzc’

where k = 150, and from which it is obvious that
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oc = OF, (XI1.G-4)

where:

2= (&Ja _ RS, (X11.G-5)
fe

This allows the evaluation of equation (XII.F-20). If we first integrate by parts,

8y=1
fU = _@gUEZ:; + f Q ng_ (X”-G'a)

gy=0

and note that the first term on the left hand side is zero at both limits (actually this
is an approximation, ®(g,=1) is very small, approximately 10%%, so we may safely
approximate it as zero!) If we now use equations (XIl.G-3) - (XII.G-5) to substitute into
equations (XIl,G-6), we get

1
f, - f o HEU1+E) dgy, (XI.G-7)
0

and since, from our above introduced approximation, we may extend the integration

upper limit to infinity, we obtain,

- 3
fy = f o vt +RY dgy, (XI1.G-8)
0

which is exactly integrable (Appendix A, Integral (A-10)), yielding,
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i I ¢

fu = ] l’
E® (1 +R9)° (X11.G-9)
R I‘(ﬁ)
_ 3
I 1’
k* (1 +RY)®
and similarly for f., from the definition of R,
)
fo = 3 (XII.G-10)
€ 1 1
k3 (1 + RS

Weiss then subdivided his battle data by ranges of R to compare with equations
(XI1.F-19) and (XI1.G-10). We reproduce this here as Table (XII.G.1).

Weiss next wrestles with a fundamental difficulty in his development. His
_equation (XII.F-19) is a function of the Fractional Loss Ratio R, while his correlation
analysis of combat data resulted in equation (XII.D-1) which is a function of force ratio .
4. He reasons that, since casualty ratio is essentially independent of force ratio, that
there is a log-normal distribution of casualty ratio r, (i.e. the Loss Exchange Ratio, Lgg,)
strongly centered on r = 1, such that the probabilities P(R), equation (XII.F-19) and
P{u), equation (XIl.D-1) are related by

P() = [ 80) P(ur) dr,
0

- [ _(Tg_(%_a_)g,, (XI1.G-11)
0 T

- f 8(r-1) P(pr) dr,
0

where, by definition above, R = u r. He does admit of the possibility that the
dispersion of the casualty data (associated with g(r)) may conceal more subtle effects
than he has assumed. -
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Table XII.G.1, Comparison of Data with Model Results "Meeting Engagements”

Range of R

0.22-0.69

0.70-0.79

0.80-1.11

1.12-2.78

Average R

0.56

0.73

0.94

1.91

Number of
Battles

7

7

7

7

Fraction of
Union Wins

0.79

0.57

0.50

0.29

Probability of
Win from
Equation
(XII.F-19)

0.85

0.72

0.55

0.13

Average
Confederate
Fractional
Loss

0.17

0.19

0.11

0.08

Calculated
Loss from
Equation

(XI1.G-10)

0.16

0.15

0.13

0.08

XIl.H.

Weiss next turns his attention to attacks on fortified lines. In the parlance of
Livermore, this category includes more than just attacks on forts; it includes any battle
or engagement where the defender has prepared positions for that purpose. In this
case, the attacker: defender casualty ratios always exceed one and have a wide
scatter. Weiss finds however, that his previous derivations still hold, although the
value of the constant k is twice as large (k = 300.) He conjectures that the reticence
for accepting a given casualty fraction may be explained by several reasons:

Assaults on Fortified Lines

1. The attacker will break off because he feels he has been
weakened beyond the point of overcoming the defender
even if he breaks through, and

2. The attacker is deterred by the psychological effect of
attacking a fortified position; i.e. fear of excessive losses

XN-23




coupled with inadequate knowledge of the defender’s

strength.
Further, based on a very small sample set (three battles,) the defender also seems
willing to accept only lower fractional losses. We might speculate that since defenses
are prepared to support, or are supported by, a relatively small force, the defender
may perceive his force to be fragile with respect to losses. Alternately, applying what
we consider to be a modern doctrine, the intent of the defender may be delay. If this
is the case, then he will accept fewer losses fractionally to maintain his force’s
fighting ability in subsequent actions after breaking off. Sadly, research to investigate
the subdivision of the fortified line battles to distinguish between absolute defensive
intentions, and delaying intentions has not been done.

Weiss further notes that Confederate losses were small except when Union
assaults were successful. He suggests then that a model need primarily be concerned
with the attacker’s fractional loss and the initial force ratio. Further, if the attacker’s
losses are proportional to the defender’s strength, then the attacker’s loss ratio will
be proportional to the initial force ratio. That is,if

AU = C,, (Xll.H-1)
then
£ =AU S (XI1.H-2)
Uy Uy

He presents scatter plots to support his arguments that, sadly, we cannot reproduce
here because we have not divided our data set as he has. Weiss does present a linear
regression result of the attacker dispersion from his data analysis, giving

AU = 1500 + 0.2 C,, (XII.H-3)

without standard deviation. He concludes that the attacker’s fractional losses show
greater variation in small battles than in large battles (i.e. the intercept dominates
when C, is small.) While Weiss admits that this could reflect the uncertainties in all
casualty data, we may offer another argument that stems from dealing with
aggregated data.

Simply put, when the defender has larger forces, he will defend a longer line to
allow his forces to fight effectively. Alternately, the larger the line to defend, the more
defenders assigned to the position by higher headquarters. Regardless, the loner the
line to defend, the easier the job for the attacker since he needs only break the
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defensive line in one or, at most, two places.* He need only concentrate forces for
a breakthrough at one (or two) places and engage the defender sufficiently elsewhere
to preclude the defender shifting troops responsively. Since he need not take as heavy
losses everywhere except at the breakthrough points, the attacker would be expected
to have greater control over his casualties and thereby less variability of them.

Weiss then divides his data set on the basis of whether the total force strength
(Union plus Confederate,) is more or less than 40,000. He finds that the attacker must
have at least a force advantage of 1.25 over the defender. Further, for larger battles
(> 40,000 total strength,) the attacker was almost twice as likely of success for an
initial force ratio = 1.25 than he was for smaller battles.

He then examines what he calls the "Stabilizing Effect of Large Numbers". A
review of both types of battles, meeting engagements and attacks on fortified lines,
shows greater variability when total losses were small than when large. Probabilistic
formulations of Lanchester Theory (to be discussed in a later chapter,) exist, but they
tend to give results which are certain when the number of troops involved is small (=
100 or so.)' On this foundation, he posits that the proper way to consider probabilistic
combat should not be based on probabilities that an element of a force is removed
from combat (i.e. killed or wounded,) but in the probabilistic variation of exchange
ratio (presumably fractional?). The distribution would be a function of various factors,
including terrain, weapons, movement, supply, and the commanders’ abilities. He
argues that such factors would average out in large battles, resulting in less variability,
as we have seen evidenced in the data presented here. To quote Weiss, "In small
battles, it is possible for a small force to defeat one much larger; in large batties,
chance works to the gambler’s ruin."”

XIi.l. Weiss’ Assault on Fortified Position Model

Weiss now constructs a model for assaults on fortified lines. He divides the
assault into two phases:
Phase 1: The defender’s losses are light, the attacker’s
given by Ax,. If these are large enough, he
may not overrun (breakthrough and hold,) the
defended position.
Phase 2: The attacker breaks through the defender’s
position. incremental loss rates for both sides

k  Obviously, the attacker will only attack if he believes he has the forces necessary for
victory; otherwise, he does not attack.

' This is the basis of an argument that Lanchester Theory is only applicable for small unit

engagements, not for battles or campaigns. The problem arises from requiring the engagement to
proceed to conclusion, assuming that to be the correct termination requirement.
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are now assumed identical (i.e. the same as in
meeting engagements.)
In Phase 1, the probability that the attacker will abandon the assault is™

xg\8
e-k(” ) (XI1.1-1)

Xq

P =

where: k = 300, from the previous section, and x, is the attacker initial force
strength.

In Phase 2, both sides take incremental losses which are assumed to be equal.
Thus,

Ax, = Ax, + Ax,, (X11.1-2)

where: Ax,,, Ax,, are the attacker’s, defender’s losses after breakthrough (at time 1),
respectively. The attacker’s fractional loss at time t is then just

8a = 8u * NEa» (XH.1-3)
where:
Ax
gdt - .__é;
*a (XI1.1-4)
n-= fé,
X

a

and x, is the defender’s initial force strength. The probability that the defender loses
can now be calculated, along the same lines as equation (XII.F-16), as

1 3 -
Q= - [ e 9e 77 4g,. (XI1.1-5)

This integral can also be solved by introducing the approximation of extending the
upper limit to infinity (since the k’s are large!), and expanding the leading term (the
attacker distribution) about

m  Actually, | believe Weiss mislabeled this probability. It would seem to be the probability that
the attacker will not abandon the assault. This seems consistent with the way Weiss uses the
formula subsequemtly in equation (XII.1-5).
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2 )3 | XI1.1-6)
* = | — 3 ( -3
84 [3kd) ’

and integrating on a term by term basis. Assuming the two k’s are equal, and have
the value noted previously, then the first term in this integrated expansion has the
form,

Q, = ¢ (e« 0130)°, (XILI-7)

From this equation, Weiss concludes that the quantity,

D =g, + 0130, (XI.1-8)
=-f;l -_— nfd + 0.13“,

where: f,, f, are the attacker, defender fractional loss ratios, respectively; should be
a discriminant of success or failure in assaults on fortified lines. He has 18 data points
in his data set and examines them, finding 3 successes and one partial success out
of five assaults for D < 0.14, and no successes for 13 assaults for D > 0.14. From
this he concludes a probability of success of the form,

P =t

As a conclusion, Weiss notes that while fortifications vary in strength (a point we
raised earlier,) the data do not support further division. Nonetheless, this equation
does provide a means for estimating probability of success in a assault given the
fractional loss ratios, or the attacker’s fractional loss in overrunning the position {i.e.
D.)

XIl.J. Weiss’ Wrap Up

Weiss finishes off his paper with two final sections on conclusions and
suggestions for further research. In keeping with our outline, we shall summarize them
here before embarking on some alternative views and comments based on our data
set in the next chapter. He draws seven general conclusions:"

" | have taken the liberty of rephrasing these slightly within the context of our textbook
presentation thus far, although | show these as quotes. The meaning, | hope and believe, is
preserved without doing Weiss a disservice.
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"1. Total losses on both sides cumulated at a fairly uniform rate
after the first half year of active hostilities.®

"2. On the average, Confederate forces secured considerably
more favorable local force ratios in battles than would be
expected. This advantage deteriorated as the war progres-
sed.

"3. Casualties on both sides were remarkably equal, both on
the whole and in battles other than assaults on fortified
lines.

"4, In battles other than assaults on fortified lines, casualty
ratios appeared to be independent of initial force ratios. The
probability of winning was a direct function of initial force
ratio, a 2:1 advantage giving about an 0.87 chance of
winning. Casualties were equal on both sides to within a
factor of 2. As a result, the winner tended to have smaller
fractional losses than the loser. -

"5. The larger the battle (in terms of total casualties,) the
smaller the statistical variation in observed casualty ratio.

"6. In assaults on fortified lines, attacker losses were propor-
tional to defender’s strength; in meeting engagements, the
casualty ratio had no dependence on initial force ratio.

"7. In attacks on fortified lines, the casualty ratio showed great
variability. The probability of successful attack increased
with increasing attacker:defender initial force ratio. Given
a favorable force ratio, the probability of success, increased
with increasing total force strength. The principal determ-
inator of success was the attacker’s fractional loss ratio.”

Weiss also lists four suggestions for future research:

1. Exchange ratio versus force composition: Bodart lists a few
meeting engagements which include the number of artillery
pieces on each side. These engagements demonstrate a
correlation between casualty and artillery piece ratios.
Investigation could be an avenue to model improvement.
(Of course, access to Bodart is a prerequisite.)

2. High fractional loss ratios on both sides of unity initial force
ratio: When initial force ratios are approximately one, the
combi~t continued to higher fractional loss ratios than
wouic have been indicated by the developed methodology.
This indicates a potential second order effect of consider-

°  We have previously commented on the variations of the data Weiss presents.
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ation of relative losses as well as the primary effect of
consideration of own losses. ’
3. Different k factors for assaults and meeting engagements:

A more general (possibly conjugate) theory to explain the

values of k other than 150 for meeting engagements and

300 for assaults on fortified lines is desirable. Weiss

suggests that the relationship between k and initial force

ratio may be insightful.

4., Large versus small battles: Dividing meeting engagements

into small and large battles indicates a possibly significant

relationship between casualty and initial force ratio. "For

small battles, high force ratios appeared to be associated

with low casualty ratios (Lanchester’s Square Law)." For

the large battles, the reverse happens, high initial force

ratios result in high casualty ratios - a side loses strength in

proportion to strength committed, regardless of enemy

force strength. Lumping all together produces a uniform

distribution. (Weiss refers to his figure, ours shows a

different shape than his.)
The latter phenomenon noted by Weiss has been recognized by others, who he
references. He notes that while vulnerability increases with force strength, effective-
ness increases less rapidly (possibly even as the square root?), and suggests that a
attrition differential equations of the form

M _ M In(N), (XI1.J-1)

dt

called the logarithmic law, may be applicable.
5. Command structure and size of battle: Since large forces
have more elaborate (and redundant?) command structures,
thus, large battles could be expected to have less disper-
sion in the casualty rate the force can fight to than a
smaller force.This can be interpreted in the cumulative
probability distribution analysis.
Weiss then concludes his article by calling for more analysis of historical data
to support the derivation of fundamental understanding of combat on a quantitative
basis. In this we can only agree wholeheartedly.

1. Griffith, Paddy, Battle Tactics of the Civil War, Yale University Press, New Haven, 1989.
2. McWhiney, Grady, and Perry D. Jamieson, Attack and Die: Civil War Military Tactics and

the Southern Heritage, The University of Alabama Press, University, AL 1982. The higher attrition
has also been associated with the Southron cultural and social mystique.

Xl-29



3. Weiss, Herbert K., "Combat Models and Historical Data: The U.S. Civil War", Operations
Research, 14(5), September-October 1966, pp. 759-790.

4, e.g., Griffith, op. cit.

5. Phister, F., Statistical Record of the Armies of the United States, J. Brussel, pub., The Blue
and The Gray Press, New York, as cited in Weiss. '

6. Livermore, T.L., Numbers and Losses in the Civil War in America, 1861-65, Civil War
Centennial Series, Indiana University Press, Bloomington, 1957, as cited in Weiss.

7. Bodart, G., Militur-historisches Kreigs-Lexikon (1618-1905), C. W. Stern, pub., Wein and
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8. Fuller, Major General J. F. C., Grant & Lee: A Study in Personality and Generalship, Indiana
University Press, Bloomington, 1957.
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XIII. "On the Red Field of Battle"®
XIIT.A Introduction

There can be little question that North and South saw the Civil War in
different terms. While some on both sides saw the reason for the war to be slavery,
the outcome settled that political-economic issue for the United States. (It did not
however, settle the issues of economic and way-of-life slavery.) Others saw the war
as a fundamental; conflict between culture (or agriculture,® its root,) and civilization
(industrialization.) Still others saw the war as a conflict between centralization and
dispersion of governance, and by that, the degree of governmental infringement on
the rights of the individual. While it is fundamentally crippling to argue for the
merits of any society that treasures individual rights while denying those rights to
others,® the fact remains that part of the conflict dealt with the question of strong
versus weak central government. Both issues were, if not settled, at least adjusted
by both the course and the outcome of the war.®

As the war progressed, the views also evolved. Southrons were defending their
homes and ways of life - thus, the Sacred Cause. Northerners were defending the
solidarity of the nation - thus, the Glorious Union.

* John Stewart and Gil Rubin, "Hallowed Ground", Longitude Music Co., BMI) in The
Cumberland Three, Songs of the Civil War. The title is taken from the lyrics of the song which is
Confederate in theme and origin.

* At the Battle of Waterloo, Arthur Wellsley, the first Duke of Wellington, Commanding
Allied Forces West against the French, Napoleon Bonaparte, Emperor (?) of France, Commanding,
is reported to have replied to a remark "Good beans, Wellington.” by the commander of the Scots
Guards, with "Sir, if there is anything about which I know absolutely nothing, it is agriculture!"
This moment bears great emotional weight in the movie, "Waterloo". I regret that I have been
unable to find a more legitimate citation to confirm the actual words or timing. Nonetheless, the
interchange is an interesting commentary on the soldier as a product of Civilization.

*  The South has a long history of contention and contradiction on this issue; e.g. "Those who
deny Liberty to others deserve it not themselves.”", Thomas Jefferson, second President of the
United States, who was himself an owner of slaves.

! Both sides had internal problems during the course of the war. The North could relatively
easily introduce conscription at the price of public disapproval; the South, bound by "States’ Rights"
had a more difficult time even introducing conscription. While speculation is difficult and probably
pointless, it is still interesting to consider whether, had the South triumphed in or at least stale-
mated the conflict, the Confederacy would have had to become more centralized to balance its
northern foe, and the Union less centralized in the wake of public sentiment over defeat and
conscription.
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The military forces also pursued their objectives in both similar and dissimilar
ways. As we have seen in the data presented in the preceding chapter, both North
and South fought in alike and different ways. The most striking of these must be the
similarity in acceptance of actual casualties in a battle (albeit the South accepted a
greater percentage.) This is especially striking given the disparity between the
technological quality and quantity of armaments and the size of forces available. The
lesson we may learn from this is that however good our technology, however strong
we are in numbers, we cannot ignore the qualities of our soldiers and their com-
manders. These need development as well if the force is to be effective.

In this chapter, we follow the material presented in the previous one. We
continue our examination of the concepts advanced by Weiss' in the context of our
data sets and in the form of alternatives. In general however, we continue our
investigation for some common view of warfare.

XIIL.B Fgr and Lgg

In the previous chapter, Weiss advanced a most striking thought: that the
fractional exchange ratio is a quantity that varies only slightly during the course of
a battle. While we examined these quantities superficially in the preceding chapter,
we need to reexamine them now in terms of their behavior during the course of the
battle. Obviously, given the theme of this text, the vehicle for this reexamination is
Lanchester Theory.

To begin this analysis, we first write the general n" (attrition) order state
solution in its integral form,

B, A,
a J‘ B™1 dB' =B J‘Aln-l dA’. (XIII.B-1)
B A

Under normal circumstances, we would just perform these integrations directly, since
they are elementary, but since we want to examine the Fgy directly, this would entail
expanding the results of the integration (as we have done in the previous chapter)
Instead, we will perform these integrations approximately using the Trapezoid Rule,?

yielding,
% (Bs* +B(y*) AB < .g_ (47" +A@®y ) 24,  (KILB-2)

from which we write the Ly as



M4 _a (B;* +By ) .
A5 g (4 vawr)

From this we see that only for an attrition order n = 1, the linear law case, is the Lgy
(and thereby the Fgg, ) obviously a constant throughout the course of a combat. Since
we know that the battles in our data base have attrition orders of approximately two,
and since the force strengths during the combat, A(t) and B(t), appear in equation
(XIIL.B-3), the "constancy" of the Lgz or Fgz is a question requiring additional
investigation.

We already know, both from the above equation, and from our developments
in the preceding chapter, that both the Lz and the Fg will be constants of the
combat for n = 1. While it is not easily practicable to investigate this explicitly for
general attrition order, it is quite easy to investigate the n = 2 case that we know
from our AIDE calculations is a close approximation, at least for the Civil War data
set. (Since we also know that attrition order tends to represent ferocity of combat, the
n = 2 case also tends to represent a case somewhere between representative and
worst for all of our data sets.) We may write the losses to the Red (Amber) force
using the explicit Quadratic Law solution, equation (III.C-10), as

AA =4, (1 -cosh(yt) ) +3B,sinh(y t). (XIIL.B-4)
We immediately note that the hyperbolic terms are products of half arguments,
1 -cosh(x) = -2sinh2[.’2f ],

(XIIIL.B-5)
sinh(x) = 2cosh[§] sinh(%],

so that we may write equation (XII1.B-4) as

AA = 2sinh(y?t] [ 8 B, cosh(—yz_t] -4, sinh(%t] ] (XIIL.B-6)

We may write a similar equation for the Blue losses as

(XIII.B-7)

2

AB =2sinh| 1| | A9 cosh[ 1) - B, sinn[ 2
2 ) 2 2
and from these, we may write the L as (after some minor cancellations,)
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(XIII.B-8)

LE'R =

é cosh| XL | - B, sinh ¥
5 2 2

We note immediately, that the rate of the Ly is half what it is for attrition. That is,
while A(t) and B(t) vary as v, Lgg(t) varies as y/2! This is an indication that we would
expect the Lgg to change slower than the force strengths; initially, for small t, by a
factor of 2. In fact, if we expand equation (XIII.B-8) for small t, the result is

SB _Ao'Yt
0
Lo w (XIILB-9)
ER ﬁg _Bo‘}’t
) 2

This equation indicates the reduced rate of change of the L. (The student may want
to compare this equation with an AIDE type of analysis - then the reduced rate is
particularly obvious! I leave this as an exercise.)

We can, of course, examine the behavior of equation (XII.B-8) numerically, but
prior to that action, it is worthwhile to continue its examination analytically. Let us
rewrite equation (XIII.B-8) in the form,

3 B, cosh[ﬂ) -4, sinh(y—t]
L. = 2 2
ER . (XII1.B-10)
io cosh[l-t] [ 1-9% E_o tanh(ﬁ] }
) 2 A, 2

and assuming the quantity in the square braces in the denominator is small (i.e.
essentially that yt is small,) expand that term to first order, giving

t . vi
8 B, cosh[Y—] -4, s1nh[_]
Lgg = A2 2 [1 +90 —%3 tanh[Y_t] }.’UH'B'ID
=22 cosh(l.t]
5 2

If we now do some minor algebra, and keep only terms of tanh to the first power
(consistent with the expansion of the denominator,) we get

0
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B
L., «82_""4+%
ER AO

B?
4

52 -1

tanh( b2 ] (XIIL.B-12)

(If we were to expand tanh in this equation, and compare that result to a similar
denominator, leading term expansion of equation (XII.B-9), the two equations would
prove to be the same.)

We recall however, that the thesis was that the Fgy is the term which does not
vary greatly according to Weiss' hypothesis. While we leave the derivation of the
exact form of the Fyy from equation (XIII.B-8) as an exercise for the student, we do
present the approximate form based on equation (XIII.B-12),

2
2BO

AZ

B2
FER=82—-9-+6% 8 -1
0

Al

tanh[ lfz_t ] (XIIL.B-13)

The leading right-hand-side term is (equivalently) the same as the result we found
approximately in the previous chapter as equation (XII.B-8) for an attrition order of
two. The right-hand-side term in square braces is essentially the state solution and
thereby represents the deviation from a draw. Therefore, we may observe that the
Fgg, to first order in the tanh, varies at half the geometric mean attrition rate®, times
a term that is proportional to the state solution. That is,

2 2 2
F, 522 .55 [o B} -p 47 ] tanh[ vt ) (XIILB-14)
& A& pa 2

The right-hand-side term in square braces is easily recognized as the state solution.

At time t = 0, therefore, Lanchester Attrition Theory for an attrition order of
two predicts that the Fgy will thus have the value we previously derived in Chapter
XII. The value of the Fgg then increases or decreases during the course of the combat
(with time) according to the sign of the state solution. Of course, for an attrition order

¢ We introduce here the term geometric mean attrition rate to indicate y since it is the
square root of the product of the two sides' attrition rates o and B. This terminology avoids
confusion with the root mean attrition rate (£) which is the square root of the sum of the
squares of the attrition rates. That is,

Yy =vyap ,
&EW.
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of one, Lanchester Attrition Theory predicts that the Fyz is a constant. For attrition
orders between one and two, we would expect the Fgg to vary, but slower than for n
=2.

How much does the Fg; vary? To examine this question, we perform calcula-
tions using the exact form of the Fyy for various initial force ratios and attrition rates.
The values of the attrition rates were chosen from the Union attrition rate
distribution, Figure XII.C.12. Attrition rates varied from 0.035 to 0.352. (We use the
Union attrition rate distribution because it is more regular than the Confederate.)
These attrition rates already include time (in days - the battle durations,) so we
characterize time as fractions of a day.

In Figure XIIL.B.1, we plot normalized Fgg's (i.e. divided by the zero time value
see equation (XIII.B-1 4),) versus time for different initial force ratios, and a § value
of 2. Over a one day combat (most of the Civil War battles in our data set lasted a
day,) all of the Fgy curves but one vary by less than a factor of two. The curve that
does vary by more than two is for an initial force ratio of 0.3. Examination of the
initial force ratio statistics given in Chapter XII shows this force ratio to be an
outlier.

In Figure XIII.B.2, we plot normalized Fiy's versus time for initial force ratios
of 0.5 and & values of 0.44 to 0.50. Only the 8 = 4.57 curve varies by more than a
factor of two. This curve has the greatest value of geometric mean attrition rate and
similarly to the case noted above, is an outlier.

From these calculations, we may therefore conclude that Weiss' observation
that the Fy does not vary by more than a factor of two during a combat is consistent
with the mathematical formalism of Lanchester Attrition Theory. While it is
tempting to extend this conclusion generally, we must take care in doing so. The
calculations presented here, we must recall, are based on the data available on the
Civil War, interpreted statistically. If we qualify the statement, then we may say
that for short battles (approximately one day in duration,) with moderate geometric
mean attrition rates, and initial force ratios between approximately 0.5 and 3.0, then
the Fyy as predicted by Lanchester Attrition Theory does not vary by more than a
factor of two during a combat.

XIII.C A Meeting Engagement Model

In his paper analyzing the Civil War, Weiss divides battles into two categories:
meeting engagements; and attacks on fortified lines. Since his purpose is the
analysis of historical data, he does not introduce an theoretical discussion of the
differences between these two types of battles in terms of Lanchester Attrition
Theory. Our purpose however, is the consideration of that body of theory, and we
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shall therefore pause in our consideration of historical data to examine some of the
mathematical applications of that theory.

In this section, we now examine a simple model of meeting engagements
derived from the body of theory that we have established thus far. We turn for the
basis of this theory to Section VI.H, Quadratic Lanchester Law with Reinforcements.
As with all of our discussions thus far, we have limited ourselves to homogeneously
aggregated combat. We shall return, in a later chapter, once we have taken up the
subject of heterogeneously aggregated combat, to discuss a more elaborate model of
meeting engagements.

The Quadratic Lanchester Attrition Differential Equations, as previously given
in Section VI.H, are

94 _ o B +a), (XIII.C-1)
di :

and
g.tﬁ. =B A +b(D), (XIILC-2)

where a(t) and b(t) are the reinforcement rates of the Red and Blue forces respective-
ly. The general solutions of these two equations are

A(t) =A, cosh(yt) -B, 8 sinh(yt) -
t / / )
+J; dt’ a(t’) cosh(yt -yt’) (XIIL.C-3)
-8 ['dt/ b(t') sinh(yt -y1),

and

B(t) =B, cosh(y?) —-%'-1 sinh(y t)
+Lt dt’ b(t’) cosh(yt -yt (XIIL.C-4)

-1 f‘ dt’ a(t’) sinh(yt -yt’),
6 0

These equations are identical to equations (VI.H-1),(VI.H-2),(VI.H-13), and (VL.H-14),
respectively.
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We build our model of a meeting engagement from these equations. In a
meeting engagement, leading portions of each force meet and engage in combat.
More portlons of each force arrive and enter into the combat. While one force may
effectively seize a defensive posture, often due to terrain advantages, it 1s also
common for the battle to seesaw between attack and defense for each force.! This
means that the attrition rates for each force will also seesaw over the progress of the
battle, an elaboration that our simple model does not incorporate. Instead, we simply
assume an average attrition rate for each force for the entire battle. As we shall see,
some insight may be drawn from even this simplified model.

In keeping with the battle outlined above, we define the initial forces that come
into contact as Ag and Bg respectively, and further define the times for each force to
fully deploy into the battle as 1, and 5. The total force strengths available for the
battle are designated by A and By, which are all related by

Ap =Ag + fo “dt’ a(t’), - (XIIL.C-5)

and ‘
B, =Bg + jo " dt! b(t!). (XIIL.C-6)

The student should note that the quantities defined here, particularly equations
(XIII.C-5) and (XIIL.C-6), have nothing to do with the combat itself. They merely
establish the total force strengths of the two sides. Because our model of a meeting
engagement starts with only part of each side in combat, we must have some
accounting of the total force and the introduction of force strength into the combat.
(Of course, the battle could start with all of one side deployed. The equations to be
developed also include that situation although it violates our model in principle.) The
reinforcement rates a(t) and b(t) are defined to be zero for t greater than 1,, 15,
respectively.

Before proceeding with the model's mathematical solution, it is useful to define
some shortcut notation for the reinforcement terms that will occur in the solution.
Accordingly we define what amount to hyperbolic function transforms of the
reinforcement rates. The time dependent terms are:
and since these terms will take on constant values once a!’ forces of each side have
been deployed into the battle, the time independent terms are:

In a heterogeneously aggregated model, we would allow the battle to be fought as a series of
engagements between subcomponents or units of the two forces. These engagements could be
fought alternately as offensive and defensive for each side. We shall deal with this more complex

model in a later chapter.
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(a(®)), = J‘o‘ dt’ a(t’) sinh(yt"), 0 < t < 1,
(@@)), = J‘o‘ dt’ a(t’) cosh(yt’), 0 <t <1,

t (XIIL.C-7)
(b)), = jo dt’ b(t') sinh(yt’), 0 <t < 1,
(b)), = jo‘ dt’ a(t’) cosh(yt’), 0 < t < 1,
{a) = J::‘ dt’ a(t’) sinh(yt’),
= [™ / / /
{a), = IO dt’ a(t’) cosh(yt’), ILC8)

(), = jo dt’ b(t') sinh(y1’),
(b), = L‘B dt’ a(t’) cosh(yt’),

We may now proceed to develop our meeting engagement model solution using these
equations.

For times prior to the full engagement of each sides’ total force strengths (t <
T5 Tp), the force strength time solutions are

A(t) =(As +{a(®)),) cosh(yt) +{a(t)), sinh(y?) (XIILC-9)
-8(Bg +{b(2)),) sinh(y¢) -8(b(2)), cosh(y ),

and

B(t) =(Bs +{b(2)),) cosh(yt) +{b(?)), sinh(yt)

. I1.C-10
_ (As ;a(t))c) sinh(y 1) - {a(®)), cosh (v £), 1 )

For times greater than (or equal to) the deployment times (t > t,, tg), the force
strength time solutions have the forms,
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A(t) =(Ag +{a),) cosh(y?) +{a), sinh(y?) (XIILC-11)
-8(Bg +(b),) sinh(y?) -5(b), cosh(y1),

and

B(t) =(Bg +{b),) cosh(yt) +(b), sinh(y?)

11.C-12
- (As +<a>°) sinh(yt) - (c;)s cosh(y t), ™1 )

These equations are identical except that the reinforcement terms in equations
(XIII.C-11) and (XTII.C-12) have reached their constant (fully deployed or committed)
values. If we interpret these variables as such, that is, as variables that reach a
fixed value, then the two sets of solution equations are identical.

With a simple prescription, these four equations constitute the mathematical
solution of our meeting engagement model. This prescription is simply:

) if 0 < t < 1,, 15, the force strength solutions are given by equations
(XIII.C-9) and (XIII.C-10);

o if T, <t < 15, the force strength solutions are given by equations
(XII1.C-9) and (XIII.C-10), with <a(t)>,

o if 15 <t < 14, the force strength solutions are given by equations
(XIII.C-9) and (XIII.C-10), with <b(t)>, = <b>; and

o if 1,, 1 < t, the force strength solutions are given by equations

(XIII.C-11) and (XIII.C-12).
We note that regardless of the total force strengths involved, the battle cannot end
conclusively prior to either 1, or 15, depending on which side is concluded. Also, in the
two intermediary regions, where time has progressed where one force has fully
deployed, but not the other, the solution equations are intermediary in form between

those above.

Before proceeding, a couple of points of discussion need to be addressed. First,

all of the terms in equations (XIII.C-11) and (XIII.C-12), except the hyperbolic
functions, are constants. As a result, we may form a state solution from them. That
is, a function of the form,

A, =aB(1)* -BA(t)? = constant,t > 1,1z, (XIII.C-13)

can be formed by substituting equations (XIII.C-11) and (XIII.C-12) into the above
equation, carrying out all of the requisite algebra, and the result will be time
independent. In a Lanchester Attrition Theory sense, this means that once all of the
forces have been committed to the combat, the progress of that combat proceeds as
described by simple Quadratic Lanchester attrition equations. This is not an
unexpected result, but its occurrence is heartening none the less.
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Of course, we could also form this state solution using equations (XIII.C-9) and
(XIII.C-10) (or any A, B combination of the four equations,) but the result would be
time dependent until the greater of 1, and 15 is reached. Such a formula would relate
the inter-relationships of the force strengths, but only for times less than the
minimum of 7, and 15 (or the relevant interval) Only once all forces have been
committed to the combat does this "state solution" become a constant and take on the
proper behavior we expect of a state solution.

Second, as we have noted before, these equations are quite general. We are
perfectly free to use them when Ag and/or Bg, or a(t) and/or b(t), or any reasonable
combination, are zero. This allows us to study the progress of different types of
combat of the general meeting engagement type. Also as we have noted, this model
of meeting engagements is for homogeneous aggregation and assumes average
attrition rates for the entire combat. Within these restrictions, the model permits free
investigation.

Third, the restriction of average attrition rates permits us to solve the
differential equations analytically and generally in the four time regions. We could
introduce a scenario where the attrition rates change, and as long as they change
discretely and are constant between changes, we could define time regions for all
these values of attrition rates, and write solutions for each time region. Of course,
this would result in a large number of solution equations, and their very number
would probably confuse the issue of gaining insight.

At this point, it is useful to examine the behavior of these solutions in
graphical form by actual calculation. To do this, we must assume some form for the
reinforcement rates. The simplest form that we may assume is a constant rate of
reinforcement, although the theory is sufficiently general that we could equally well
use any mathematical form we wish.® The reinforcement rates then have the form

Ap - A
a(t) = -lt—-i,t < Ty (XIIL.C-14)
A

and

B
b(t) = TSt < 14, (XIIL.C-15)

T

The reinforcement rate integrals take on particular forms,

¢ A case of particular interest that we do not address here is punctuated reinforcement
where there are intervals where reinforcements arrive, and intervals where there are no reinforce-
ments. We shall investigate this problem in a later chapter on chaos in Lanchester Theory.
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Table XIII.C.1. Meeting Engagement Model Calculation Parameters

The constant value forms of the reinforcement rate inte;als can be formed by
substituting t,, T, appropriately in equations (XIII.C-16). These equations may now
be used to perform calculations.”

b As an aside, if we take these reinforcement rate integrals, assume t,, 75, are sufficiently
small to allow expansion of the hyperbolic functions to order t,, 75, in McLauren series (then <b>,,

F;g. Ar B, As Bs o B Ta L
1 100 100 | 12.5 25 0.01 0.01 5 5
2 100 100 | 12,5 25 0.02 0.01 5 5
3 100 100 | 12,5 25 0.04 0.01 5 5
4 100 100 | 10 5 0.02 0.01 | 10 15
5 100 100 | 10 5 0.02 0.01 5 15
6 100 100 | 10 5 0.02 0.01 | 15 5
7 100 711 10 5 0.02 0.01 5 5
8 100 711 10 5 0.02 001 1] 15 5
9 100 711 10 5 0.02 0.01 | 25 5

10 100 711 10 5 0.04 0.02 | 25 5
(a(t)), = Ar = 4s [ cosh(y?) -1 ],
Y T4
{(a(t)), = Ar ~4s sinh(y 1),
Y Ta I1.C-16
B, - B, XI )
b)), = [cosh(y t) -1 ],
Y8
B, -B
(b(t)), = ZL__5 sinh(yt).
Y8

<a>, = 0,) and substitute into equations (XIII.C-11) and (XIII.C-12), the results are standard

quadratic Lanchester force strengths without reinforcement. This confirms our earlier assertion

about the "state solution". We leave this as an exercise for the student.

Xlll-12



We present some sample calculations in figures XIII.C.1-XIII.C.10. The
parameters of these calculations are summarized in Table XIII.C.1. Figures XIII.C.1 -
XIII.C.3 present variations of attrition rates for forces that are totally balanced, and
whose deployment times are the same, but with initial forces that vary by a factor
of two. Obviously, attrition rate is the dominant factor in these calculations.

In figures XII1.C.4-XIII.C.6, again present balanced forces with 2:1 initial force
ratio, but with different deployment times. While attrition rate is still dominant, it
may be seen that the shorter the deployment time, the better for reducing losses. To
examine this, figures XIII.C.7-XIII.C.9 present a Blue force with short deployment
time, against a Red force with parametrically increasing deployment time. These
amply demonstrate the advantage of short deployment time. These figures (and
XIII.C.10) have forces whose normal state solution (i.e. if all forces had been deployed
initially,) would indicate a draw.

Finally, figure XIII.C.10 presents the same calculations for figure XIII.C.9
except that the attrition rates on both sides are doubled. This case reverses the force
strength situation. Except initially, Red never has more forces in action than does
Blue. The combination of high attrition rate (even on both sides,) and long Red
deployment time act to provide Blue with complete superiority. This is shown
explicitly by the third curve in this figure which is the Red:Blue force ratio. Note that
even after one time unit, this ratio is less than one!

We wish to emphasize that the meeting engagement model presented here will
permit consideration of any form of reinforcement rate. A particular case of interest
are where the average reinforcement rate (for one or both forces) is less than the
attrition rate, but instantaneous reinforcement rates can be greater than the attrition
rate. This type of situation is shown in figures XIII.C.11 - XIII.C.13. In this case, the
reinforcement rates have the form,

A, -A
a(t) =2 ZL_"3 sin®(e4t),t < 1y,
Ta 11.C-17
B, - B, XI )

b(t) =2 sin®(ogt),t < 15.

The leading factor of 2 on the right-hand-sides of these equations are necessary for

normalization (approximately! The derivation is left to the student as an exercise.)

These reinforcement rates are initially zero, and are periodic with frequencies 0 ,, 05,

respectively. If we were to plot these reinforcement functions, we would find that they

have bumps - they are zero at frequency-time products (i.e. ot) equal to 2nm, n =
0,1,2,..., and have maxima at frequency-time products equal to (2n+l)7/2. Operation-

ally, we may view this as the situation when units are arriving at a battle directly

from march along an avenue, are briefly formed, and then committed.
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Thus, the battle starts between the two starting force strengths Ag, and By,
then a unit arrives and enters the battle, sequentially on each side. By t = MAX(x,,
1), all forces have been committed. Obviously, there are two extremes which can
occur with reinforcement rates of this form. If units arrive faster than attrition
occurs, then the result is about what we saw with the constant reinforcement rates
discussed above. Alternately, if units arrive slower than attrition, the effect is a series
of engagements, waxing and waning as first one side and then the other gains
dominance. This case is essentially the archetype of attrition which is frequently
viewed as a slow grinding down of forces.

In figure XIII.C.11, we present calculations for the same parameters as shown
in figure XIII.C.10, except that we use ® values of 0.3, and deployment times of 7, =
25, and 15 = 20. Note that for times less than 10 units, both sides suffer attrition
faster than reinforcement occurs. This continues for the Red force, which never
recovers, but the Blue force has seized the advantage by t = 13. The Red force is
basically only throwing units into the engagement to be attrited without ever gaining
an advantage. Also note the relatively small forces actually in the battle: the
maximum force strengths are never above about 12% for Red, and 35% for Blue! The
force ratio curve is relatively smooth here.

In figure XIII.C.12, we increase the frequencies of arrival, we o , = 7/5 (~ 0.63),
and oy = /6 (~ 0.52). Now we see periods between unit arrival when attrition occurs
faster than reinforcement, but also other periods when reinforcement is faster than
attrition. This leads to the stair-step arrangement in this figure where force strength
may actually decrease over short periods even prior to full deployment. Of particular
note is the shape of the force ratio curve. While still smooth, it oscillates as
reinforcements arrive, temporarily giving one side an advantage, until t = 1 (the
longer deployment time,) when it becomes a steady decay driven by Blue's greater
attrition rate. Note also that because reinforcement is beginning to dominate attrition
here, more force strength in the battle.

Finally, in figure XIII.C.13, we keep the same parameters of figure XIII.C.12
except that we reduce the Blue deployment time from 20 to 1 5. From our calcula-
tions with constant attrition rates, we would expect this to have the effect of favoring
Blue, and examination of the figure shows this to be the situation. This case is
intermediary between the previous two. The stair-step behavior is still present, but
the reduced Blue deployment time (in this selected case,) means that Red never
achieves a numeric advantage, only reaching parity in Force Strength at t = 15. Also,
the force ratio curve still oscillates with much the same form as in the previous
figure, but because Blue seizes the numeric advantage because of its reduced
deployment time, the oscillations after about t = 8, all have maxima less than 1 until
t = 1z when Red briefly has parity.
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This set of examples shows that the meeting engagement model here can be
used to relatively generally simulate combats for a variety of conditions. The form of
the model, while derived from Lanchester Attrition Theory, is far different in form
than what we are used to seeing in the simple cases previously considered where all
of the force strength was in the battle from its beginning. As we have seen, different
insights and results may be drawn from this model than from those simple situations.
In particular, one case that has been of particular interest in recent years in
Lanchester Attrition Theory is that where the reinforcement rate is a function of the
force ratio. We shall consider this case in the chapter dealing with chaos and

Lanchester Theory.

XIII.D. Model of Attacks on Fortified Lines

In this section, we again develop a Lanchester Attrition Theory based model

of a type of combat considered by Weiss. In this case, the combat type is attacks on
fortified lines. To develop this model, we must suspend two of our restrictions that
we have imposed thus far. We rationalize this exception to provide the student with
an insightful presentation to complement the model of meeting engagements
presented in the preceding section.

The first suspension is on our (already violated!) practice thus far of only
considering homogeneously aggregated combat. In this case, it will be necessary to
divide both the attacking and the defending forces into two separate forces, albeit
that each will be homogeneously aggregated. The necessity of this will become
obvious as we proceed.

The second suspension is fundamentally more important. To develop this
model, it is necessary that we relax one of the assumptions central to the interpreta-
tion of Quadratic Lanchester Attrition. In particular, if we refer to Section IV.C.1,
Square Law Assumptions, we need to relax assumption 2:

The units of the two forces are within weapons range of all units

of the other side.

As we noted in that chapter, this assumption is really stronger than it needs to be
for most considerations. It is adequate and (usually,) equivalent to only assume that
the units of each force have units of the other force within weapons range that they
may engage with effect. This change in the assumption is necessary to permit us to
make adequate use of the Principle of Concentration to develop this model.

An attack on a fortified line is divided into two parts: the assault on and
(possibly) the breakthrough of the line, and the engagement within the line. We shall
treat each part in sequence. For convenience, we will assume that the Red force is
the attacker, and the Blue force is the defender. The Blue force is defending a
fortified line of length Fy that, if not closed, is bounded by terrain so that the Red
force cannot flank it. Both Red and Blue units have a range of effective fire p with
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attrition rates assumed constant inside that range, zero beyond. Both Red and Blue
forces are deployed along the line of fortification. Part of the Red force will assault
the line. The width of the assault force is w, and it has a speed of advance of s. We
will designate the assaulting force's strength as R,, and the remainder of the Red
force strength, assumed to be deployed along the rest of the line as R,.

Prior to the assault, Blue will have positioned his forces along the fortification,
presumably with approximately uniform density. If he has time and opportunity to
recognize the coming Red assault, he may have readjusted his deployment.
Additionally, he may have reserved a force to reinforce the line in the area of
assaults. Accordingly, we shall designate the Blue force as B,. B,, and B, to indicate
the Blue force along the assaulted portion of the line, the remainder of force on the
line, and the reinforcements. Except for the reinforcements, this is shown diagram-
matically in Figure XIII.D.1.

Obviously, Blue would like to redistribute his forces during the assault.
Equally obviously, Red does not want Blue to do this. Accordingly, Red may launch
an harassing attack along all or most of the fortified line prior to the actual assault,
primarily to pin down Blue's forces. Additionally, he will try to execute the assault
faster than Blue can reposition his forces, or he may launch a false assault to draw
forces away from the area of the actual assault. All of these embellishments are
simple, given the body of theory we have already established (e.g. the harassing
assault would just be modeled as a standard Lanchester engagement between all the
non-reinforcing units for some period of time,) or from the parameters to b